2,461
Views
20
CrossRef citations to date
0
Altmetric
Report

Weak protein interactions and pH- and temperature-dependent aggregation of human Fc1

, , , , , & show all
Pages 1072-1083 | Received 19 May 2015, Accepted 27 Jul 2015, Published online: 18 Sep 2015

References

  • Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. MAbs 2015; 7:9-14; PMID:25529996; http://dx.doi.org/10.4161/19420862.2015.989042
  • Aggarwal S. What's fueling the biotech engine - 2012 to 2013. Nat Biotechnol 2014; 32:32-9; PMID:24406926; http://dx.doi.org/10.1038/nbt.2794
  • Carter P. Introduction to current and future protein therapeutics: a protein engineering perspective. Exp Cell Res 2011; 317:1261-9; PMID:21371474; http://dx.doi.org/10.1016/j.yexcr.2011.02.013
  • Kontermann R, Brinkmann U. Bispecific antibodies. Drug Discov Today 2015; 0:1-10
  • Beck A, Reichert J. Therapeutic Fc-fusion proteins and peptides as successful alternatives to antibodies. mAbs 2011; 3:415-6; PMID:21785279; http://dx.doi.org/10.4161/mabs.3.5.17334
  • Rath T, Baker K, Dumont J, Peters R, Jiang H, Qiao S, Lencer W, Pierce G, Blumberg R. Fc-fusion proteins and FcRn: structural insights for longer-lasting and more effective therapeutics. Crit Rev Biotechnol 2015; 35:235-54; PMID:24156398; http://dx.doi.org/10.3109/07388551.2013.834293
  • Levin D, Golding B, Strome S, Sauna Z. Fc fusion as a platform technology: potential for modulating immunogenicity. Trends Biochem Sci 2015; 33:27-34
  • Kontermann R. Strategies to extend plasma half-lives of recombinant antibodies. BioDrugs 2009; 23:93-109; PMID:19489651; http://dx.doi.org/10.2165/00063030-200923020-00003
  • Braun A, Kwee L, Labow M, Alsenz J. Protein aggregates seem to play a key role among the parameters influencing the antigenicity of interferon α (IFN-α) in normal and transgenic mice. Pharm Res 1997; 14:1472-8; PMID:9358564; http://dx.doi.org/10.1023/A:1012193326789
  • Schellekens H. Bioequivalence and the immunogenicity of biopharmaceuticals. Nat Rev 2002; 1:457-62
  • Ratanji K, Derrick J, Dearman R, Kimber I. Immunogenicity of therapeutic proteins: Influence of aggregation. J Immunotoxicol 2014; 11:99-109; PMID:23919460; http://dx.doi.org/10.3109/1547691X.2013.821564
  • Wu H, Kroe-Barrett R, Singh S, Robinson A, Roberts C. Competing aggregation pathways for monoclonal antibodies. FEBS Lett 2014; 588:936-41; PMID:24530501; http://dx.doi.org/10.1016/j.febslet.2014.01.051
  • Weiss IV W, Young T, Roberts C. Principles, approaches, and challenges for predicting protein aggregation rates and shelf life. J Pharm Sci 2009; 98:1246-77; PMID:18683878; http://dx.doi.org/10.1002/jps.21521
  • Kumar S, Wang X, Singh S. Identification and impact of aggregation-prone regions in proteins and therapeutic monoclonal antibodies. In: Aggregation of therapeutic proteins. Hoboken, NJ: John Wiley & Sons, Inc; 2011; 103-15
  • Zhong X, Wright J. Biological insights into therapeutic protein modifications throughout trafficking and their biopharmaceutical applications. Int J Cell Biol 2013; 2013: Article ID 273086; 1-15; PMID:23690780; http://dx.doi.org/10.1155/2013/273086
  • Kim H, Yamaguchi Y, Masuda K, Matsunaga C, Yamamoto K, Irimura T, Takahashi N, Kato K, Arata Y. O-glycosylation in hinge region of mouse immunoglobulin G2b. J Biol Chem 1994; 269:12345-50; PMID:7512967
  • Liu H, Gaza-Bulseco G, Faldu D, Chumsae C, Sun J. Heterogeneity of monoclonal antibodies. J Pharm Sci 97:2426-47; PMID:17828757; http://dx.doi.org/10.1002/jps.21180
  • Demarest S, Rogers J, Hansen G. Optimization of the antibody CH3 domain by residue frequency analysis of IgG sequences. J Mol Biol 2004; 335:41-8; PMID:14659738; http://dx.doi.org/10.1016/j.jmb.2003.10.040
  • Souillac P. Biophysical characterization of insoluble aggregates of a multi-domain protein: an insight into the role of the various domains. J Pharm Sci 2005; 94:2069-83; PMID:16052560; http://dx.doi.org/10.1002/jps.20423
  • Ionescu R, Vlasak J, Price C, Kirchmeier M. Contribution of variable domains to the stability of humanized IgG1 monoclonal antibodies. J Pharm Sci 2008; 97:1414-26; PMID:17721938; http://dx.doi.org/10.1002/jps.21104
  • Roberts C. Non-native protein aggregation kinetics. Biotechnol Bioeng 2007; 98:9237-8; http://dx.doi.org/10.1002/bit.21627
  • Roberts C. Kinetics of irreversible protein aggregation: analysis of extended Lumry-Eyring models and implications for predicting protein shelf life. J Phys Chem B 2003; 107:1194-207; http://dx.doi.org/10.1021/jp026827s
  • Andrews J, Roberts C. A Lumry-Eyring nucleation polymerization model of protein aggregation kinetics: 1. aggregation with pre-equilibrated unfolding. J Phys Chem B 2007; 111:7897-913; PMID:17571872; http://dx.doi.org/10.1021/jp070212j
  • Andrews J, Roberts C. Non-native aggregation of α-Chymotrypsinogen occurs through nucleation and growth with competing nucleus sizes and negative activation energies. Biochemistry (Mosc) 2007; 46:7558-71; http://dx.doi.org/10.1021/bi700296f
  • Voet D, Voet JG. Biochemistry (3rd ed). Hoboken, NJ: John Wiley and Sons, Inc; 2004
  • Brown P, Schuck P. Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation. Biophys J 2006; 90:4651-61; PMID:16565040; http://dx.doi.org/10.1529/biophysj.106.081372
  • Chase S, Laue T. The determination of protein valence by capillary electrophoresis. PACE Setter 2008; 12:1-5
  • Edsall J, Wyman J. Biophysical Chemistry: Volume 1 (1st ed.). San Diego, CA: Academic Press; 1958; 282-95
  • Henry D. The cataphoresis of suspended particles. Proc Roy Soc A 1931; 133:106-40; http://dx.doi.org/10.1098/rspa.1931.0133
  • Kertes A, King C. Extraction chemistry of fermentation product carboxylic-acids. Biotechnol Bioeng 1986; 28:269-82; PMID:18555324; http://dx.doi.org/10.1002/bit.260280217
  • Blanco M, Sahin E, Li Y, Roberts C. Reexamining protein-protein and protein-solvent interactions from Kirkwood-Buff analysis of light scattering in multi-component solutions. J Chem Phys 2011; 134:225103-12; PMID:21682538; http://dx.doi.org/10.1063/1.3596726
  • Blanco M, Perevozchikova T, Martorana V, Manno M, Roberts C. Protein-protein interactions in dilute to concentrated solutions: α-chymotrypsinogen in acidic conditions. J Phys Chem B 2014; 118:5817-31; PMID:24810917; http://dx.doi.org/10.1021/jp412301h
  • Brummitt R, Nesta D, Chang L, Chase S, Laue T, Roberts C. Nonnative aggregation of an IgG1 antibody in acidic conditions: Part 1. unfolding, colloidal interactions, formation of high-molecular-weight aggregates. J Pharm Sci 2011; 100:2087-103; PMID:21213308; http://dx.doi.org/10.1002/jps.22448
  • Kim N, Remmele R Jr., Liu D, Razinkov V, Fernandez E, Roberts C. Aggregation of anti-streptavidin immunoglobulin gamma-1 involves Fab unfolding and competing growth pathways mediated by pH and salt concentration. Biophys Chem 2013; 172:26-36; PMID:23334430; http://dx.doi.org/10.1016/j.bpc.2012.12.004
  • Sahin E, Grillo A, Perkins M, Roberts C. Comparative effects of pH and ionic strength on protein-protein interactions, unfolding, and aggregation for IgG1 antibodies. J Pharm Sci 2010; 99:4830-48; PMID:20821389; http://dx.doi.org/10.1002/jps.22198
  • Li Y, Roberts C. A Lumry-Eyring nucleated-polymerization model of protein aggregation kinetics 2. Competing growth via condensation and chain polymerization. J Phys Chem B 2009; 113:7020-32; PMID:19368365; http://dx.doi.org/10.1021/jp8083088
  • Li Y, Weiss IV W, Roberts C. Characterization of high-molecular-weight nonnative aggregates and aggregation kinetics by size exclusion chromatography with inline multi-angle laser light scattering. J Pharm Sci 2009; 98:3997-4016; PMID:19283773; http://dx.doi.org/10.1002/jps.21726
  • Brummitt R, Nesta D, Chang L, Kroetsch A, Roberts C. Nonnative aggregation of an IgG1 antibody in acidic conditions, Part 2: nucleation and growth kinetics with competing growth mechanisms. J Pharm Sci 2011; 100:2104-19; PMID:21213307; http://dx.doi.org/10.1002/jps.22447
  • Li Y, Ogunnaike B, Roberts C. Multi-variate approach to global protein aggregation behavior and kinetics: Effects of pH, NaCl, and temperature for α-chymotrypsinogen A. J Pharm Sci 2010; 99:645-62; PMID:19653264; http://dx.doi.org/10.1002/jps.22159
  • Santora L, Krull I, Grant K. Characterization of recombinant human monoclonal tissue necrosis factor-α antibody using cation-exchange HPLC and capillary isoelectric focusing. Anal Biochem 1999; 275:98-108; PMID:10542114; http://dx.doi.org/10.1006/abio.1999.4275
  • Santora L, Stanley K, Krull I, Grant K. Characterization of maleuric acid derivatives on transgenic human monoclonal antibody due to post-secretional modifications in goat milk. Biomed Chromatogr 2006; 20:843-56; PMID:16425344; http://dx.doi.org/10.1002/bmc.603
  • Lyubarskaya Y, Houde D, Woodard J, Murphy D, Mhatre R. Analysis of recombinant monoclonal antibody isoforms by electrospray ionization mass spectrometry as a strategy for streamlining characterization of recombinant monoclonal antibody charge heterogeneity. Anal Biochem 2006; 348:24-39; PMID:16289440; http://dx.doi.org/10.1016/j.ab.2005.10.003
  • Garber E, Demarest S. A broad range of Fab stabilities within a host of therapeutic IgGs. Biochem Biophys Res Commun 2007; 355:751-7; PMID:17321501; http://dx.doi.org/10.1016/j.bbrc.2007.02.042
  • McConnell A, Spasojevich V, Macomber J, Krapf I, Chen A, Sheffer J, Berkebile A, Horlick R, Neben S, King D, et al. An integrated approach to extreme thermostabilization and affinity maturation of an antibody. Protein Eng Des Sel 2013; 26:151-63; PMID:23173178; http://dx.doi.org/10.1093/protein/gzs090
  • Latypov R, Hogan S, Lau H, Gadgil H, Liu D. Elucidation of acid-induced unfolding and aggregation of human immunoglobulin IgG1 and IgG2 Fc. J Biol Chem 2012; 287:1381-96; PMID:22084250; http://dx.doi.org/10.1074/jbc.M111.297697
  • Vermeer A, Norde W. The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophys J 2000; 78:394-404; PMID:10620303; http://dx.doi.org/10.1016/S0006-3495(00)76602-1
  • Ahmed A, Giddens J, Pincetic A, Lomino J, Ravetch J, Wang L, Bjorkman P. Structural characterization of anti-inflammatory immunoglobulin G Fc proteins. J Mol Biol 2014; 426:3166-79; PMID:25036289; http://dx.doi.org/10.1016/j.jmb.2014.07.006
  • Barnett G, Razinkov V, Kerwin B, Laue T, Woodka A, Butler P, Perevozchikova T, Roberts C. Specific-ion effects on the aggregation mechanisms and protein-protein interactions for anti-streptavidin immunoglobulin gamma-1. J Phys Chem B 2015; 119:5793-804; PMID:25885209; http://dx.doi.org/10.1021/acs.jpcb.5b01881
  • Ben-Naim A. Statistical thermodynamics for chemists and biochemists (1st ed.). New York, NY: Plenum Press; 1992
  • McQuarrie D. Statistical mechanics (2nd ed.). Sausalito, CA: University Science Books; 2000
  • Israelachvili J. Intermolecular & surface forces (2nd ed.). London, UK: Academic Press; 1992
  • Roberts D, Keeling R, Tracka M, van der Walle C, Uddin S, Warwicker J, Curtis R. The role of electrostatics in protein-protein interactions of a monoclonal antibody. Mol Pharm 2014; 11:2475-89; PMID:24892385; http://dx.doi.org/10.1021/mp5002334
  • Tessier P, Sandler S, Lenhoff A. Direct measurement of protein osmotic second virial coefficients by cross-interaction chromatography. Protein Sci 2004; 13:1379-90; PMID:15075404; http://dx.doi.org/10.1110/ps.03419204
  • Arosio P, Jaquet B, Wu H, Morbidelli M. On the role of salt type and concentration on the stability behavior of a monoclonal antibody solution. Biophys Chem 2012; 168–169:19-27; PMID:22750560; http://dx.doi.org/10.1016/j.bpc.2012.05.004
  • Drenski M, Brader M, Alston R, Reed W. Monitoring protein aggregation kinetics with simultaneous multiple sample light scattering. Anal Biochem 2013; 437:185-97; PMID:23481914; http://dx.doi.org/10.1016/j.ab.2013.02.014
  • Roberts C, Darrington R. Irreversible aggregation of recombinant bovine granulocyte-colony stimulating factor (bG-CSF) and implications for predicting protein shelf life. J Pharm Sci 2003; 92:1095-111; PMID:12712430; http://dx.doi.org/10.1002/jps.10377
  • Wang W, Roberts C. Non-Arrhenius protein aggregation. AAPS J 2013; 15:840-51; PMID:23615748; http://dx.doi.org/10.1208/s12248-013-9485-3
  • Kayser V, Chennamsetty N, Voynov V, Helk B, Forrer K, Trout BL. Evaluation of a Non-Arrhenius model for therapeutic monoclonal antibody aggregation. J Pharm Sci 2011; 100:2526-42; PMID:21268027; http://dx.doi.org/10.1002/jps.22493
  • Saluja A, Sadineni V, Mungikar A, Nashine V, Kroetsch A, Dahlheim C, Rao VM. Significance of unfolding thermodynamics for predicting aggregation kinetics: A case study on high concentration solutions of a multi-domain protein. Pharm Res 2014; 31:1575-87; PMID:24398696; http://dx.doi.org/10.1007/s11095-013-1263-5
  • Cole J, Lary J, Moody T, Laue T. Analytical ultracentrifugation: sedimentation velocity and sedimentation equilibrium. Methods Cell Biol 2008; 84:143-79; PMID:17964931; http://dx.doi.org/10.1016/S0091-679X(07)84006-4
  • Schuck P, Perugini M, Gonzales N, Howlett G, Schubert D. Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys J 2002; 82:1096-111; PMID:11806949; http://dx.doi.org/10.1016/S0006-3495(02)75469-6
  • Harding S, Rowe A, Horton J. Analytical ultracentrifugation in biochemistry and polymer science (1st ed.). London, UK: Royal Society of Chemistry; 1992
  • Adamson N, Reynolds E. Rules relating electrophoresis mobility, charge, and molecular size of peptides and proteins. J Chromatogr B 1997; 699:133-47; http://dx.doi.org/10.1016/S0378-4347(97)00202-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.