2,290
Views
12
CrossRef citations to date
0
Altmetric
Reports

Combining phage display with de novo protein sequencing for reverse engineering of monoclonal antibodies

, , , , &
Pages 501-512 | Received 25 Nov 2015, Accepted 19 Jan 2016, Published online: 24 Mar 2016

References

  • Bandeira N, Pham V, Pevzner P, Arnott D, Lill JR. Automated de novo protein sequencing of monoclonal antibodies. Nat Biotechnol 2008; 26:1336-8; PMID:19060866; http://dx.doi.org/10.1038/nbt1208-1336
  • Castellana NE, McCutcheon K, Pham VC, Harden K, Nguyen A, Young J, Adams C, Schroeder K, Arnott D, Bafna V, et al. Resurrection of a clinical antibody: Template proteogenomic de novo proteomic sequencing and reverse engineering of an anti-lymphotoxin-alpha antibody. Proteomics 2011; 11:395-405; PMID:21268269; http://dx.doi.org/10.1002/pmic.201000487
  • Dekker L, Wu S, Vanduijn M, Tolic N, Stingl C, Zhao R, Luider T, Pasa-Tolic L. An integrated top-down and bottom-up proteomic approach to characterize the antigen-binding fragment of antibodies. Proteomics 2014; 14:1239-48; PMID:24634104; http://dx.doi.org/10.1002/pmic.201300366
  • Perdivara I, Deterding L, Moise A, Tomer KB, Przybylski M. Determination of primary structure and microheterogeneity of a beta-amyloid plaque-specific antibody using high-performance LC-tandem mass spectrometry. Anal Bioanal Chem 2008; 391:325-36; PMID:18369607; http://dx.doi.org/10.1007/s00216-008-1941-z
  • Pham V, Henzel WJ, Arnott D, Hymowitz S, Sandoval WN, Truong BT, Lowman H, Lill JR. De novo proteomic sequencing of a monoclonal antibody raised against OX40 ligand. Anal Biochem 2006; 352:77-86; PMID:16545334; http://dx.doi.org/10.1016/j.ab.2006.02.001
  • Sousa E, Olland S, Shih HH, Marquette K, Martone R, Lu Z, Paulsen J, Gill D, He T. Primary sequence determination of a monoclonal antibody against alpha-synuclein using a novel mass spectrometry-based approach. Int J Mass Spectrom 2012; 312:61-9; http://dx.doi.org/10.1016/j.ijms.2011.05.005
  • Castellana NE, Pham V, Arnott D, Lill JR, Bafna V. Template proteogenomics: Sequencing whole proteins using an imperfect database. Mol Cell Proteomics 2010; 9:1260-70; PMID:20164058; http://dx.doi.org/10.1074/mcp.M900504-MCP200
  • Shuford WW, Klussman K, Tritchler DD, Loo DT, Chalupny J, Siadak AW, Brown TJ, Emswiler J, Raecho H, Larsen CP, et al. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med 1997; 186:47-55; PMID:9206996; http://dx.doi.org/10.1084/jem.186.1.47
  • Taraban VY, Rowley TF, O'Brien L, Chan HT, Haswell LE, Green MH, Tutt AL, Glennie MJ, Al-Shamkhani A. Expression and costimulatory effects of the TNF receptor superfamily members CD134 (OX40) and CD137 (4-1BB), and their role in the generation of anti-tumor immune responses. Eur J Immunol 2002; 32:3617-27; PMID:12516549; http://dx.doi.org/10.1002/1521-4141(200212)32:12<3617::AID-IMMU3617>3.0.CO;2-M
  • Craig R, Beavis RC. TANDEM: Matching proteins with tandem mass spectra. Bioinformatics 2004; 20:1466-7; PMID:14976030; http://dx.doi.org/10.1093/bioinformatics/bth092
  • Poston CN, Higgs RE, You J, Gelfanova V, Hale JE, Knierman MD, Siegel R, Gutierrez JA. A quantitative tool to distinguish isobaric leucine and isoleucine residues for mass spectrometry-based de novo monoclonal antibody sequencing. J Am Soc Mass Spectrom 2014; 25:1228-36; PMID:24845350; http://dx.doi.org/10.1007/s13361-014-0892-1
  • Armirotti A, Millo E, Damonte G. How to discriminate between leucine and isoleucine by low energy ESI-TRAP MSn. J Am Soc Mass Spectrom 2007; 18:57-63; PMID:17010643; http://dx.doi.org/10.1016/j.jasms.2006.08.011
  • Lebedev AT, Damoc E, Makarov AA, Samgina TY. Discrimination of leucine and isoleucine in peptides sequencing with orbitrap fusion mass spectrometer. Anal Chem 2014; 86:7017-22; PMID:24940639; http://dx.doi.org/10.1021/ac501200h
  • abYsis, version 2.3.3. http://www.bioinf.org.uk/abysis/searches/distributions/distributions.html
  • Giudicelli V, Duroux P, Ginestoux C, Folch G, Jabado-Michaloud J, Chaume D, Lefranc MP. IMGT/LIGM-DB, the IMGT comprehensive database of immunoglobulin and T cell receptor nucleotide sequences. Nucleic Acids Res 2006; 34:D781-4; PMID:16381979; http://dx.doi.org/10.1093/nar/gkj088
  • Kunkel TA, Bebenek K, McClary J. Efficient site-directed mutagenesis using uracil-containing DNA. Methods Enzymol 1991; 204:125-39; PMID:1943776; http://dx.doi.org/10.1016/0076-6879(91)04008-C
  • Baca M, Presta LG, O'Connor SJ, Wells JA. Antibody humanization using monovalent phage display. J Biol Chem 1997; 272:10678-84; PMID:9099717; http://dx.doi.org/10.1074/jbc.272.16.10678
  • Kabat EA, Wu TT, Perry HM, Gottesman KS, Foeller C. Sequences of Proteins of Immunological Interest. 5th ed. Bethesda, MD: Public Health Service, National Institutes of Health, 1991
  • Chothia C, Lesk AM. Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 1987; 196:901-17; PMID:3681981; http://dx.doi.org/10.1016/0022-2836(87)90412-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.