2,121
Views
11
CrossRef citations to date
0
Altmetric
Report

Antibody production using a ciliate generates unusual antibody glycoforms displaying enhanced cell-killing activity

, , , , , , , , , , & show all
Pages 1498-1511 | Received 15 Jun 2016, Accepted 19 Aug 2016, Published online: 01 Nov 2016

References

  • Collins K, Gorovsky M. Tetrahymena thermophila. Curr Biol 2005; 15:R317-8; PMID:15886083; http://dx.doi.org/10.1016/j.cub.2005.04.039
  • Wheatley D, Rasmussen L, Tiedtke A. Tetrahymena: a model for growth, cell cycle and nutritional studies, with biotechnological potential. Bioessays 1994; 16:367-72; PMID:8024545; http://dx.doi.org/10.1002/bies.950160512
  • Kiy TT. Mass cultivation of Tetrahymena thermophila yielding high cell densities and short generation times. Appl Microbiol Biotechnol 1992; 37:576-9; http://dx.doi.org/10.1007/BF00240728
  • Clark T, Zhang X, Jayaram J, Appleton J, Bisharyan Y, Gagliardo L, Colussi P, Papoyan A, Cassidy-Hanley D. An Alternative Platform for Rapid Production of Effective Subunit Vaccines, Tetrahymena thermophila offers numerous advantages as an expression system, including rapid cell growth and high cell densities, eukaryotic protein folding, and active synthesis of membrane and secreted proteins. BioPharm Int 2010; 2:1-6.
  • Stover N, Krieger C, Binkley G, Dong Q, Fisk D, Nash R, Sethuraman A, Weng S, Cherry J. Tetrahymena Genome Database (TGD): a new genomic resource for Tetrahymena thermophila research. Nucleic Acids Res 2006; 34:D500-3; PMID:16381920; http://dx.doi.org/10.1093/nar/gkj054
  • Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR, Badger JH, Ren Q, Amedeo P, et al. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. PLoS Biol 2006; 4:e286; PMID:16933976; http://dx.doi.org/10.1371/journal.pbio.0040286
  • Xiong J, Lu X, Lu Y, Zeng H, Yuan D, Feng L, Chang Y, Bowen J, Gorovsky M, et al. Tetrahymena Gene Expression Database (TGED): a resource of microarray data and co-expression analyses for Tetrahymena. Sci China Life Sci 2011; 54: 65-67; PMID:21253873; http://dx.doi.org/10.1007/s11427-010-4114-1
  • Weide T, Bockau U, Rave A, Herrmann L, Hartmann MWW. A recombinase system facilitates cloning of expression cassettes in the ciliate Tetrahymena thermophila. BMC Microbiol 2007; 7:12; PMID:17328820; http://dx.doi.org/10.1186/1471-2180-7-12
  • Herrmann L, Bockau U, Tiedtke A, Hartmann MWW, Weide T. The bifunctional dihydrofolate reductase thymidylate synthase of Tetrahymena thermophila provides a tool for molecular and biotechnology applications. BMC Biotechnol 2006; 6:21; PMID:16549005; http://dx.doi.org/10.1186/1472-6750-6-21
  • Gaertig J, Gorovsky MA. Efficient mass transformation of Tetrahymena thermophila by electroporation of conjugants. Proc Natl Acad Sci U S A 1992; 89:9196-200; PMID:1409625; http://dx.doi.org/10.1073/pnas.89.19.9196
  • Cassidy-Hanley D, Bowen J, Lee JH, Cole E, VerPlank LA, Gaertig J, Gorovsky MA, Bruns PJ. Germline and somatic transformation of mating Tetrahymena thermophila by particle bombardment. Genetics 1997; 146:135-47; PMID:9136007
  • Cowan GJM, Bockau U, Eleni-Muus J, Aldag I, Samuel K, Creasey A, Hartmann MWW, Cavanagh DR. A novel malaria vaccine candidate antigen expressed in Tetrahymena thermophila. PLoS One 2014; 9:e87198; PMID:24489871; http://dx.doi.org/10.1371/journal.pone.0087198
  • Aldag I, Bockau U, Rossdorf J, Laarmann S, Raaben W, Herrmann L, Weide T, Hartmann MWW. Expression, secretion and surface display of a human alkaline phosphatase by the ciliate Tetrahymena thermophila. BMC Biotechnol 2011; 11:11; PMID:21281462; http://dx.doi.org/10.1186/1472-6750-11-11
  • Weide T, Herrmann L, Bockau U, Niebur N, Aldag I, Laroy W, Contreras R, Tiedtke A, Hartmann MWW. Secretion of functional human enzymes by Tetrahymena thermophila. BMC Biotechnol 2006; 6:19; PMID:16542419; http://dx.doi.org/10.1186/1472-6750-6-19
  • Knaeblein J. Modern Biopharmaceuticals: Recent Success Stories. Knaeblein J. (Editor) Wiley-VCH Verlag GmbH & Co, KGaA; 2013.
  • Ravetch JV. Fc receptors. Curr Opin Immunol 1997; 9:121-25; PMID:9039776; http://dx.doi.org/10.1016/S0952-7915(97)80168-9
  • Mimura Y, Church S, Ghirlando R, Ashton P, Dong S, Goodall M, Lund J, Jefferis R. The influence of glycosylation on the thermal stability and effector function expression of human IgG1-Fc: properties of a series of truncated glycoforms. Mol Immunol 2000; 37:697-706; PMID:11275255; http://dx.doi.org/10.1016/S0161-5890(00)00105-X
  • Rudd PM, Dwek RA. Glycosylation: heterogeneity and the 3D structure of proteins. Crit Rev Biochem Mol Biol 1997; 32:1-100; PMID:9063619; http://dx.doi.org/10.3109/10409239709085144
  • Bowden TA, Baruah K, Coles CH, Harvey D, Yu X, Song B-D, Stuart DI, Aricescu A, Scanlan CN, et al. Chemical and structural analysis of an antibody folding intermediate trapped during glycan biosynthesis. J Am Chem Soc 2012; 134:17554-63; PMID:23025485; http://dx.doi.org/10.1021/ja306068g
  • Dalziel M, Crispin M, Scanlan CN, Zitzmann N, Dwek RA. Emerging principles for the therapeutic exploitation of glycosylation. Science 2014; 343:1235681; PMID:24385630; http://dx.doi.org/10.1126/science.1235681
  • Washburn N, Schwab I, Ortiz D, Bhatnagar N, Lansing JC, Medeiros A, Tyler S, Mekala D, Cochran E, et al. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity. Proc Natl Acad Sci U S A 2015; 112:E1297-306; PMID:25733881; http://dx.doi.org/10.1073/pnas.1422481112
  • Zou G, Ochiai H, Huang W, Yang Q, Li C, Wang LX. Chemoenzymatic synthesis and Fc receptor binding of homogeneous glycoforms of antibody Fc domain. Presence of a bisecting sugar moiety enhances the affinity of Fc to FcIIIa receptor. J Am Chem Soc 2011; 133:18975-91; PMID:22004528; http://dx.doi.org/10.1021/ja208390n
  • Yu M, Brown D, Reed C, Chung S, Lutman J, Stefanich E, Wong A, Stephan JP, Bayer R. Production, characterization, and pharmacokinetic properties of antibodies with N-linked mannose-5 glycans. mAbs 2012; 4:475-487; PMID:22699308; http://dx.doi.org/10.4161/mabs.20737
  • Kanda Y, Yamada T, Mori K, Okazaki A, Inoue M, Kitajima-Miyama K, Kuni-Kamochi R, Nakano R, Yano K, et al. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology 2007; 17:104-18; PMID:17012310; http://dx.doi.org/10.1093/glycob/cwl057
  • Beck A, Reichert JM. Marketing approval of mogamulizumab: a triumph for glyco-engineering. mAbs 2012; 4:419-425; PMID:22699226; http://dx.doi.org/10.4161/mabs.20996
  • Cérutti M, Golay J. Lepidopteran cells, an alternative for the production of recombinant antibodies? mAbs 2012; 4:294-309; http://dx.doi.org/10.4161/mabs.19942
  • Ha S, Wang Y, Rustandi R. Biochemical and biophysical characterization of humanized IgG1 produced in Pichia pastoris. mAbs 2011; 3:453-60; PMID:22048694; http://dx.doi.org/10.4161/mabs.3.5.16891
  • Tada M, Tatematsu K, Ishii-Watabe A, Harazono A, Takakura D, Hashii N, Sezutsu H, Kawasaki N. Characterization of anti-CD20 monoclonal antibody produced by transgenic silkworms (Bombyx mori). mAbs 2015; 7:1-13; PMID:25484055; http://dx.doi.org/10.4161/19420862.2015.988944
  • Platis D, Drossard J, Fischer R, Ma JK, Labrou NE. New downstream processing strategy for the purification of monoclonal antibodies from transgenic tobacco plants. J Chromatogr A 2008; 1211:80-89; PMID:18945431; http://dx.doi.org/10.1016/j.chroma.2008.09.103
  • Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, et al. Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 2004; 87:614-22; PMID:15352059; http://dx.doi.org/10.1002/bit.20151
  • Umaña P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 1999; 17:176-80; PMID:10052355; http://dx.doi.org/10.1038/6179
  • Zhang N, Liu L, Dumitru CD, Cummings NR, Cukan M, Jiang Y, Li Y, Li F, Mitchell T, et al. Glycoengineered Pichia produced anti-HER2 is comparable to trastuzumab in preclinical study. mAbs 2011; 3:289-98; PMID:21487242; http://dx.doi.org/10.4161/mabs.3.3.15532
  • Wuitschick JD, Karrer KM. Analysis of genomic G + C content, codon usage, initiator codon context and translation termination sites in Tetrahymena thermophila. J Eukaryot Microbiol 1999; 46:239-47; PMID:10377985; http://dx.doi.org/10.1111/j.1550-7408.1999.tb05120.x
  • Larsen LK, Andreasen PH, Dreisig H, Palm L, Nielsen H, Engberg J, Kristiansen K. Cloning and characterization of the gene encoding the highly expressed ribosomal protein l3 of the ciliated protozoan Tetrahymena thermophila. Evidence for differential codon usage in highly expressed genes. Cell Biol Int 1999; 23:551-60; PMID:10704239; http://dx.doi.org/10.1006/cbir.1999.0419
  • Pedersen IM, Buhl AM, Klausen P, Geisler CH, Jurlander J. The chimeric anti-CD20 antibody rituximab induces apoptosis in B-cell chronic lymphocytic leukemia cells through a p38 mitogen activated protein-kinase-dependent mechanism. Blood 2002; 99:1314-19; PMID:11830481; http://dx.doi.org/10.1182/blood.V99.4.1314
  • Smith MR. Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene 2003; 22:7359-68; PMID:14576843; http://dx.doi.org/10.1038/sj.onc.1206939
  • Ha S, Ou Y, Vlasak J, Li Y, Wang S, Vo K, Du Y, Mach A, Fang Y, Zhang N. Isolation and characterization of IgG1 with asymmetrical Fc glycosylation. Glycobiology 2011; 21:1087-96; PMID:21470983; http://dx.doi.org/10.1093/glycob/cwr047
  • Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 2002; 99:754-8; PMID:11806974; http://dx.doi.org/10.1182/blood.V99.3.754
  • Natsume A, Niwa R, Satoh M. Improving effector functions of antibodies for cancer treatment: Enhancing ADCC and CDC. Drug Des Devel Ther 2009; 3:7-16; PMID:19920917
  • Parekh BS, Berger E, Sibley S, Cahya S, Xiao L, LaCerte MA, Vaillancourt P, Wooden S, Gately D. Development and validation of an antibody-dependent cell-mediated cytotoxicity-reporter gene assay. mAbs 2012; 4:310-318; PMID:22531445; http://dx.doi.org/10.4161/mabs.19873
  • Domon B, Costello CE. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj J 1988; 5:397-409; http://dx.doi.org/10.1007/BF01049915
  • Börnsen KO, Mohr MD, Widmer HM. Ion exchange and purification of carbohydrates on a Nafion(R) membrane as a new sample pretreatment for matrix-assisted laser desorption-ionization mass spectrometry. Rapid Commun Mass Spectrom 1995; 9:1031-34; http://dx.doi.org/10.1002/rcm.1290091112
  • Giles K, Pringle SD, Worthington KR, Little D, Wildgoose JL, Bateman RH. Applications of a travelling wave-based radio-frequency-only stacked ring ion guide. Rapid Commun Mass Spectrom 2004; 18:2401-14; PMID:15386629; http://dx.doi.org/10.1002/rcm.1641
  • Harvey D. Fragmentation of negative ions from carbohydrates: Part 2. Fragmentation of high-mannose N-linked glycans. J Am Soc Mass Spectrom 2005; 16:631-46; PMID:15862765; http://dx.doi.org/10.1016/j.jasms.2005.01.005
  • Harvey D, Royle L, Radcliffe CM, Rudd PM, Dwek RA. Structural and quantitative analysis of N-linked glycans by matrix-assisted laser desorption ionization and negative ion nanospray mass spectrometry. Anal Biochem 2008; 376:44-60; PMID:18294950; http://dx.doi.org/10.1016/j.ab.2008.01.025
  • Yu C, Crispin M, Sonnen AFP, Harvey DJ, Chang VT, Evans EJ, Scanlan CN, Stuart D, Gilbert RJC, Davis SJ. Use of the α-mannosidase I inhibitor kifunensine allows the crystallization of apo CTLA-4 homodimer produced in long-term cultures of Chinese hamster ovary cells. Acta Cryst F 2011; 67:785-9; PMID:21795794; http://dx.doi.org/10.1107/S1744309111017672
  • Maley F, Trimble RB, Tarentino AL, Plummer T, Jr. Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem 1989; 180:195-204; PMID:2510544; http://dx.doi.org/10.1016/0003-2697(89)90115-2
  • Stover NA, Krieger CJ, Binkley G, Dong Q, Fisk DG, Nash R, Sethuraman A, Weng S, Cherry JM. Tetrahymena Genome Database (TGD): a new genomic resource for Tetrahymena thermophila research. Nucleic Acids Res. 2006; 34 ( Database issue):D500-3; PMID:16381920; http://dx.doi.org/10.1093/nar/gkj054
  • Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. mAbs 2015; 7:9-14; PMID:25529996; http://dx.doi.org/10.4161/19420862.2015.989042
  • Zhang J. In: Manual of Industrial Microbiology and Biotechnology, Third Edition. Baltz RH, Demain AL, Davies JE, Bull AT, Junker B, Katz L, Lynd LR, Masurekar P, Reeves CD, Zhao H. (Editors) ASM Press, Washington, DC; 2010
  • Frenzel A, Hust M, Schirrmann T. Expression of recombinant antibodies. Front Immunol 2013; 4:217; PMID:23908655; http://dx.doi.org/10.3389/fimmu.2013.00217
  • Ho SCL, Tong YW, Yang Y. Generation of monoclonal antibody-producing mammalian cell lines. Pharmaceut Bioproc 2013; 1:71-87; http://dx.doi.org/10.4155/pbp.13.8
  • Dick LW, Jr, Qui D, Mahon D, Adamo M, Cheng KC. C-terminal lysine variants in fully human monoclonal antibodies. Biotechnol Bioeng 2008; 100(6):1132-43; PMID:18553400; http://dx.doi.org/10.1002/bit.21855
  • Jefferis R. Glycosylation of recombinant antibody therapeutics. Biotechnol Prog 2005; 21:11-6; PMID:15903235; http://dx.doi.org/10.1021/bp040016j
  • Liu YD, Flynn GC. Effect of high mannose glycan pairing on IgG antibody clearance. Biologicals 2016; 44(3):163-9; PMID:26992607; http://dx.doi.org/10.1016/j.biologicals.2016.02.003
  • Rustandi RR, Washabaugh MW, Wang Y. Applications of CE SDS gel in development of biopharmaceutical antibody-based products. Electrophoresis 2008; 29:3612-20; PMID:18803223; http://dx.doi.org/10.1002/elps.200700958
  • Lux A, Yu X, Scanlan CN, Nimmerjahn F. Impact of immune complex size and glycosylation on IgG binding to human FcγRs. J Immunol. 2013; 190(8):4315-23; PMID:23509345; http://dx.doi.org/10.4049/jimmunol.1200501
  • Baruah K, Bowden TA, Krishna BA, Dwek RA, Crispin M, Scanlan CN. Selective deactivation of serum IgG: a general strategy for the enhancement of monoclonal antibody receptor interactions. J Mol Biol. 2012; 420(1-2):1-7; PMID:22484364; http://dx.doi.org/10.1016/j.jmb.2012.04.002
  • Preithner S, Elm S, Lippold S, Locher M, Wolf A, da Silva AJ, Baeuerle PA, Prang NS. High concentrations of therapeutic IgG1 antibodies are needed to compensate for inhibition of antibody-dependent cellular cytotoxicity by excess endogenous immunoglobulin G. Mol Immunol. 2006; 43(8):1183-93; PMID:16102830; http://dx.doi.org/10.1016/j.molimm.2005.07.010
  • Taniguchi T, Mizuochi T, Banno Y, Nozawa Y, Kobata A. Carbohydrates of lysosomal enzymes secreted by Tetrahymena pyriformis. J Biol Chem 1985; 260:13941-6; PMID:2932444
  • Kurz S, Tiedtke A. The Golgi apparatus of Tetrahymena thermophila. J Eukaryot Microbiol 1993; 40:10-3; PMID:8457796; http://dx.doi.org/10.1111/j.1550-7408.1993.tb04874.x
  • Blum JJ. Lysosomal hydrolase secretion by Tetrahymena: a comparison of several intralysosomal enzymes with the isoenzymes released into the medium. J Cell Physiol 1976; 89:457-72; PMID:10311; http://dx.doi.org/10.1002/jcp.1040890311
  • Hossler P, Khattak SF, Li ZJ. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology 2009; 19:936-49; PMID:19494347; http://dx.doi.org/10.1093/glycob/cwp079
  • Rouiller Y, Périlleux A, Collet N, Jordan M, Stettler M, Broly H. A high-throughput media design approach for high performance mammalian fed-batch cultures. MAbs 2013; 5:501-11; PMID:23563583; http://dx.doi.org/10.4161/mabs.23942
  • Banno Y, Sasaki N, Nozawa Y. Secretion heterogeneity of lysosomal enzymes in Tetrahymena pyriformis. Exp Cell Res 1987; 170:259-68; PMID:2954837; http://dx.doi.org/10.1016/0014-4827(87)90304-1
  • Krapp S, Mimura Y, Jefferis R, Huber R, Sondermann P. Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol 2003; 325:979-989; PMID:12527303; http://dx.doi.org/10.1016/S0022-2836(02)01250-0
  • Crispin M, Bowden TA, Coles CH, Harlos K, Aricescu AR, Harvey D, Stuart DI, Jones EY. Carbohydrate and domain architecture of an immature antibody glycoform exhibiting enhanced effector functions. J Mol Biol 2009; 387:1061-66; PMID:19236877; http://dx.doi.org/10.1016/j.jmb.2009.02.033
  • Goetze AM, Liu YD, Zhang Z, Shah B, Lee E, Bondarenko PV, Flynn GC. High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology 2011; 21:949-59; PMID:21421994; http://dx.doi.org/10.1093/glycob/cwr027
  • Xie R, Clark KM, Gorovsky MA. Endoplasmic reticulum retention signal-dependent glycylation of the Hsp70/Grp170-related Pgp1p in Tetrahymena. Eukaryot Cell 2007; 6:388-97; PMID:17189490; http://dx.doi.org/10.1128/EC.00366-06
  • Gaertig J, Kapler G. Transient and stable DNA transformation of Tetrahymena thermophila by electroporation. Methods Cell Biol 2000; 62:485-500; PMID:10503213; http://dx.doi.org/10.1016/S0091-679X(08)61552-6
  • Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680-5; PMID:5432063; http://dx.doi.org/10.1038/227680a0
  • Wang S, Ionescu R, Peekhaus N, Leung JY, Ha S, Vlasak J. Separation of post-translational modifications in monoclonal antibodies by exploiting subtle conformational changes under mildly acidic conditions. J Chromatogr A 2010; 1217:6496-502; PMID:20828701; http://dx.doi.org/10.1016/j.chroma.2010.08.044
  • Dorion-Thibaudeau J, Raymond C, Lattová E, Perreault H, Durocher Y, De Crescenzo G. Towards the development of a surface plasmon resonance assay to evaluate the glycosylation pattern of monoclonal antibodies using the extracellular domains of CD16a and CD64. J Immunol Methods 2014; 408:24-34; PMID:24810583; http://dx.doi.org/10.1016/j.jim.2014.04.010
  • Neville DCA, Dwek RA, Butters TD. Development of a single column method for the separation of lipid- and protein-derived oligosaccharides. J Proteome Res 2009; 8:681-7; PMID:19099509; http://dx.doi.org/10.1021/pr800704t
  • Harvey D, Merry A, Royle L, Campbell M, Dwek RA, Rudd PM. Proposal for a standard system for drawing structural diagrams of N- and O-linked carbohydrates and related compounds. Proteomics 2009; 9:3796-3801; PMID:19670245; http://dx.doi.org/10.1002/pmic.200-900096
  • Crispin M, Yu X, Bowden TA. Crystal structure of sialylated IgG Fc: implications for the mechanism of intravenous immunoglobulin therapy. Proc Natl Acad Sci U S A 2013; 110:E3544-46; PMID:23929778; http://dx.doi.org/10.1073/pnas.1310657110
  • Petrescu AJ, Butters TD, Reinkensmeier G, Petrescu S, Platt FM, Dwek RA, Wormald MR. The solution NMR structure of glucosylated N-glycans involved in the early stages of glycoprotein biosynthesis and folding. EMBO J 1997; 16:4302-10; PMID:9250674; http://dx.doi.org/10.1093/emboj/16.14.4302