4,057
Views
13
CrossRef citations to date
0
Altmetric
Report

Identification of human IgG1 variant with enhanced FcRn binding and without increased binding to rheumatoid factor autoantibody

, , , , , , , & show all
Pages 844-853 | Received 30 Nov 2016, Accepted 29 Mar 2017, Published online: 04 May 2017

References

  • Kalden JR, Burkhardt H. Autoimmune disease: Treatment. Encyclopedia of Life Sciences 2009; https://doi.org/10.1002/9780470015902.a0001437.pub2
  • Rosman Z, Shoenfeld Y, Zandman-Goddard G. Biologic therapy for autoimmune diseases: An update. BMC Med 2013; 11:88; PMID: 23557513; https://doi.org/10.1186/1741-7015-11-88
  • Chan AC, Carter PJ. Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 2010; 10:301-16; PMID: 20414204; https://doi.org/10.1038/nri2761
  • Wang D, Li Y, Liu Y, Shi G. The use of biologic therapies in the treatment of rheumatoid arthritis. Curr Pharm Biotechnol 2014; 15:542-8; PMID: 25213363; https://doi.org/10.2174/138920101506140910150612
  • Lycke J. Monoclonal antibody therapies for the treatment of relapsing-remitting multiple sclerosis: Differentiating mechanisms and clinical outcomes. Ther Adv Neurol Disord 2015; 8:274-93; PMID: 26600872; https://doi.org/10.1177/1756285615605429
  • Igawa T, Tsunoda H, Tachibana T, Maeda A, Mimoto F, Moriyama C, Nanami M, Sekimori Y, Nabuchi Y, Aso Y, et al. Reduced elimination of IgG antibodies by engineering the variable region. Protein Eng Des Sel 2010; 23:385-92; PMID: 20159773; https://doi.org/10.1093/protein/gzq009
  • Igawa T, Tsunoda H, Kuramochi T, Sampei Z, Ishii S, Hattori K. Engineering the variable region of therapeutic IgG antibodies. mAbs 2011; 3:243-52; PMID: 21406966; https://doi.org/10.4161/mabs.3.3.15234
  • Igawa T, Ishii S, Tachibana T, Maeda A, Higuchi Y, Shimaoka S, Moriyama C, Watanabe T, Takubo R, Doi Y, et al. Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutralization. Nat Biotechnol 2010; 28:1203-7; PMID: 20953198; https://doi.org/10.1038/nbt.1691
  • Igawa T, Maeda A, Haraya K, Tachibana T, Iwayanagi Y, Mimoto F, Higuchi Y, Ishii S, Tamba S, Hironiwa N, et al. Engineered monoclonal antibody with novel antigen-sweeping activity in vivo. PloS one 2013; 8:(5):e63236; PMID:23667591; https://doi.org/10.1371/journal.pone.0063236
  • Dall'Acqua WF, Kiener PA, Wu H. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem 2006; 281:23514-24; PMID: 16793771; https://doi.org/10.1074/jbc.M604292200
  • Zalevsky J, Chamberlain AK, Horton HM, Karki S, Leung IW, Sproule TJ, Lazar GA, Roopenian DC, Desjarlais JR. Enhanced antibody half-life improves in vivo activity. Nat Biotechnol 2010; 28:157-9; PMID: 20081867; https://doi.org/10.1038/nbt.1601
  • Deng R, Loyet KM, Lien S, Iyer S, DeForge LE, Theil FP, Lowman HB, Fielder PJ, Prabhu S. Pharmacokinetics of humanized monoclonal anti-tumor necrosis factor-{alpha} antibody and its neonatal Fc receptor variants in mice and cynomolgus monkeys. Drug Metab Dispos 2010; 38:600-5; PMID: 20071453; https://doi.org/10.1124/dmd.109.031310
  • Zheng Y, Scheerens H, Davis JC, Jr., Deng R, Fischer SK, Woods C, Fielder PJ, Stefanich EG. Translational pharmacokinetics and pharmacodynamics of an FcRn-variant anti-CD4 monoclonal antibody from preclinical model to phase I study. Clin Pharmacol Ther 2011; 89:283-90; PMID: 21191378; https://doi.org/10.1038/clpt.2010.311
  • Robbie GJ, Criste R, Dall'acqua WF, Jensen K, Patel NK, Losonsky GA, Griffin MP. A novel investigational Fc-modified humanized monoclonal antibody, motavizumab-YTE, has an extended half-life in healthy adults. Antimicrob Agents Chemother 2013; 57:6147-53; PMID: 24080653; https://doi.org/10.1128/AAC.01285-13
  • West AP, Jr., Bjorkman PJ. Crystal structure and immunoglobulin G binding properties of the human major histocompatibility complex-related Fc receptor. Biochemistry 2000; 15; 39(32):9698-708; PMID: 10933786; https://doi.org/10.1021/bi000749m
  • Ghetie V, Ward ES. Multiple roles for the major histocompatibility complex class I- related receptor FcRn. Annu Rev Immunol 2000; 18:739-66; PMID: 10837074; https://doi.org/10.1146/annurev.immunol.18.1.739
  • Yeung YA, Leabman MK, Marvin JS, Qiu J, Adams CW, Lien S, Starovasnik MA, Lowman HB. Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pharmacokinetics in primates. J Immunol 2009; 182:7663-71; PMID: 19494290; https://doi.org/10.4049/jimmunol.0804182
  • Haraya K, Tachibana T, Iwayanagi Y, Maeda A, Ozeki K, Nezu J, Ishigai M, Igawa T. PK/PD analysis of a novel pH-dependent antigen-binding antibody using a dynamic antibody-antigen binding model. Drug Metab Pharmacokinet 2016; 31:123-32; PMID: 26944099; https://doi.org/10.1016/j.dmpk.2015.12.007
  • Igawa T, Haraya K, Hattori K. Sweeping antibody as a novel therapeutic antibody modality capable of eliminating soluble antigens from circulation. Immunol Rev 2016; 270:132-51; PMID: 26864109; https://doi.org/10.1111/imr.12392
  • Iwayanagi Y, Igawa T, Maeda A, Haraya K, Wada NA, Shibahara N, Ohmine K, Nambu T, Nakamura G, Mimoto F, et al. Inhibitory FcgammaRIIb-Mediated soluble antigen clearance from plasma by a pH-Dependent Antigen-Binding antibody and its enhancement by Fc engineering. J Immunol 2015; 195:3198-205; PMID: 26320252; https://doi.org/10.4049/jimmunol.1401470
  • Ingegnoli F, Castelli R, Gualtierotti R. Rheumatoid factors: clinical applications. Dis Markers 2013; 35:727-34; PMID: 24324289; https://doi.org/10.1155/2013/726598
  • Newkirk MM. Rheumatoid factors: Host Resistance or Autoimmunity?. Clin Immunol 2002; 104:1-13; PMID: 12139942; https://doi.org/10.1006/clim.2002.5210
  • Carson DA, Chen PP, Kipps TJ. New roles for rheumatoid factor. J Clin Invest 1991; 87:379-83; PMID: 1991824; https://doi.org/10.1172/JCI115007
  • Araujo J, Zocher M, Wallace K, Peng K, Fischer SK. Increased rheumatoid factor interference observed during immunogenicity assessment of an Fc-engineered therapeutic antibody. J Pharm Biomed Anal 2011; 55:1041-9; PMID: 21466939; https://doi.org/10.1016/j.jpba.2011.03.008
  • Sasso EH, Barber CV, Nardella FA, Yount WJ, Mannik M. Antigenic specificities of human monoclonal and polyclonal IgM rheumatoid factors. The C gamma 2-C gamma 3 interface region contains the major determinants. J Immunol 1988; 140:3098-107; PMID: 2452199
  • Artandi SE, Calame KL, Morrison SL, Bonagura VR. Monoclonal IgM rheumatoid factors bind IgG at a discontinuous epitope comprised of amino acid loops from heavy-chain constant-region domains 2 and 3. Proc Natl Acad Sci U S A 1992; 89:94-8; PMID: 1370358; https://doi.org/10.1073/pnas.89.1.94
  • Corper AL, Sohi MK, Bonagura VR, Steinitz M, Jefferis R, Feinstein A, Beale D, Taussig MJ, Sutton BJ. Structure of human IgM rheumatoid factor Fab bound to its autoantigen IgG Fc reveals a novel topology of antibody-antigen interaction. Nat Struct Biol 1997; 4:374-81; PMID: 9145108; https://doi.org/10.1038/nsb0597-374
  • Martin WL, West AP, Jr., Gan L, Bjorkman PJ. Crystal structure at 2.8 A of an FcRn/heterodimeric Fc complex: mechanism of pH-dependent binding. Mol Cell 2001; 7:867-77; PMID: 11336709; https://doi.org/10.1016/S1097-2765(01)00230-1
  • Rigsby RE, Parker AB. Using the PyMOL application to reinforce visual understanding of protein structure. Biochem Mol Biol Educ 2016; 44:433-7; PMID: 27241834; https://doi.org/10.1002/bmb.20966
  • Kiyoshi M, Caaveiro JM, Kawai T, Tashiro S, Ide T, Asaoka Y, Hatayama K, Tsumoto K. Structural basis for binding of human IgG1 to its high-affinity human receptor FcgammaRI. Nat Commun 2015; 6:6866; PMID: 25925696; https://doi.org/10.1038/ncomms7866
  • Ramsland PA, Farrugia W, Bradford TM, Sardjono CT, Esparon S, Trist HM, Powell MS, Tan PS, Cendron AC, Wines BD, et al. Structural basis for Fc gammaRIIa recognition of human IgG and formation of inflammatory signaling complexes. J Immunol 2011; 187:3208-17; PMID: 21856937; https://doi.org/10.4049/jimmunol.1101467
  • Mimoto F, Katada H, Kadono S, Igawa T, Kuramochi T, Muraoka M, Wada Y, Haraya K, Miyazaki T, Hattori K. Engineered antibody Fc variant with selectively enhanced FcgammaRIIb binding over both FcgammaRIIa(R131) and FcgammaRIIa(H131). Protein Eng Des Sel 2013; 26:589-98; PMID: 23744091; https://doi.org/10.1093/protein/gzt022
  • Mimoto F, Kadono S, Katada H, Igawa T, Kamikawa T, Hattori K. Crystal structure of a novel asymmetrically engineered Fc variant with improved affinity for FcgammaRs. Mol Immunol 2014; 58:132-8; PMID: 24334029; https://doi.org/10.1016/j.molimm.2013.11.017
  • Krishna M, Nadler SG. Immunogenicity to Biotherapeutics - The role of Anti-drug immune complexes. Front Immunol 2016; 7:21; PMID: 26870037; https://doi.org/10.3389/fimmu.2016.00021
  • Tatarewicz S, Miller JM, Swanson SJ, Moxness MS. Rheumatoid factor interference in immunogenicity assays for human monoclonal antibody therapeutics. J Immunol Methods 2010; 357:10-6; PMID: 20347831; https://doi.org/10.1016/j.jim.2010.03.012
  • Laurent L, Anquetil F, Clavel C, Ndongo-Thiam N, Offer G, Miossec P, Pasquali JL, Sebbag M, Serre G. IgM rheumatoid factor amplifies the inflammatory response of macrophages induced by the rheumatoid arthritis-specific immune complexes containing anticitrullinated protein antibodies. Ann Rheum Dis 2015; 74:1425-31; PMID: 24618262; https://doi.org/10.1136/annrheumdis-2013-204543
  • Jones JD, Shyu I, Newkirk MM, Rigby WF. A rheumatoid factor paradox: inhibition of rituximab effector function. Arthritis Res Ther 2013; 15(1):R20; ; PMID: 23351360; https://doi.org/10.1186/ar4152
  • Zhou J, Pop L, Ghetie V. Hypercatabolism of IgG in mice with lupus-like syndrome. Lupus 2005; 14:458-66; PMID: 16038110; https://doi.org/10.1191/0961203305lu2129oa
  • Duquerroy S, Stura EA, Bressanelli S, Fabiane SM, Vaney MC, Beale D, Hamon M, Casali P, Rey FA, Sutton BJ, et al. Crystal structure of a human autoimmune complex between IgM rheumatoid factor RF61 and IgG1 Fc reveals a novel epitope and evidence for affinity maturation. J Mol Biol 2007; 368:1321-31; PMID: 17395205; https://doi.org/10.1016/j.jmb.2007.02.085
  • Wu SJ, Luo J, O'Neil KT, Kang J, Lacy ER, Canziani G, Baker A, Huang M, Tang QM, Raju TS, et al. Structure-based engineering of a monoclonal antibody for improved solubility. Protein Eng Des Sel 2010; 23:643-51; PMID: 20543007; https://doi.org/10.1093/protein/gzq037
  • Suzuki S, Furuhashi M, Suganuma N. Additional N-glycosylation at Asn13 rescues the human LHb-subunit from disulfide-linked aggregation. Mol Cell Endocrinol 2000; 160:157-63; PMID: 10715549; https://doi.org/10.1016/S0303-7207(99)00213-0
  • Dowling W, Thompson E, Badger C, Mellquist JL, Garrison AR, Smith JM, Paragas J, Hogan RJ, Schmaljohn C. Influences of glycosylation on antigenicity, immunogenicity, and protective efficacy of ebola virus GP DNA vaccines. J Virol 2007; 81:1821-37; PMID: 17151111; https://doi.org/10.1128/JVI.02098-06
  • Wang W, Lu B, Zhou H, Suguitan AL, Jr., Cheng X, Subbarao K, Kemble G, Jin H. Glycosylation at 158N of the hemagglutinin protein and receptor binding specificity synergistically affect the antigenicity and immunogenicity of a live attenuated H5N1 A/Vietnam/1203/2004 vaccine virus in ferrets. J Virol 2010; 84:6570-7; PMID: 20427525; https://doi.org/10.1128/JVI.00221-10
  • Fournillier A, Wychowski C, Boucreux D, Baumert TF, Meunier JC, Jacobs D, Muguet S, Depla E, Inchauspe G. Induction of hepatitis C virus E1 envelope protein-specific immune response can be enhanced by mutation of N-glycosylation sites. J Virol 2001; 75:12088-97; PMID: 11711599; https://doi.org/10.1128/JVI.75.24.12088-12097.2001
  • Hutter J, Rodig JV, Hoper D, Seeberger PH, Reichl U, Rapp E, Lepenies B. Toward animal cell culture-based influenza vaccine design: viral hemagglutinin N-glycosylation markedly impacts immunogenicity. J Immunol 2013; 190:220-30; PMID: 23225881; https://doi.org/10.4049/jimmunol.1201060
  • Hyakumura M, Walsh R, Thaysen-Andersen M, Kingston NJ, La M, Lu L, Lovrecz G, Packer NH, Locarnini S, Netter HJ. Modification of Asparagine-Linked glycan density for the design of Hepatitis B Virus Virus-Like particles with enhanced immunogenicity. J Virol 2015; 89:11312-22; PMID: 26339047; https://doi.org/10.1128/JVI.01123-15
  • Borrok MJ, Wu Y, Beyaz N, Yu XQ, Oganesyan V, Dall'Acqua WF, Tsui P. pH-dependent binding engineering reveals an FcRn affinity threshold that governs IgG recycling. J Biol Chem 2015; 290:4282-90; PMID: 25538249; https://doi.org/10.1074/jbc.M114.603712
  • Datta-Mannan A, Chow CK, Dickinson C, Driver D, Lu J, Witcher DR, Wroblewski VJ. FcRn affinity-pharmacokinetic relationship of five human IgG4 antibodies engineered for improved in vitro FcRn binding properties in cynomolgus monkeys. Drug Metab Dispos 2012; 40:1545-55; PMID: 22584253; https://doi.org/10.1124/dmd.112.045864
  • Ng CM, Loyet KM, Iyer S, Fielder PJ, Deng R. Modeling approach to investigate the effect of neonatal Fc receptor binding affinity and anti-therapeutic antibody on the pharmacokinetic of humanized monoclonal anti-tumor necrosis factor-alpha IgG antibody in cynomolgus monkey. Eur J Pharm Sci 2014; 51:51-8; PMID: 23999033; https://doi.org/10.1016/j.ejps.2013.08.033
  • De Groot AS, Martin W. Reducing risk, improving outcomes: bioengineering less immunogenic protein therapeutics. Clin Immunol 2009; 131:189-201; PMID: 19269256; https://doi.org/10.1016/j.clim.2009.01.009
  • Jawa V, Cousens LP, Awwad M, Wakshull E, Kropshofer H, De Groot AS. T-cell dependent immunogenicity of protein therapeutics: Preclinical assessment and mitigation. Clin Immunol 2013; 149:534-55; PMID: 24263283; https://doi.org/10.1016/j.clim.2013.09.006
  • Wullner D, Zhou L, Bramhall E, Kuck A, Goletz TJ, Swanson S, Chirmule N, Jawa V. Considerations for optimization and validation of an in vitro PBMC derived T cell assay for immunogenicity prediction of biotherapeutics. Clin Immunol 2010; 137:5-14; PMID: 20708973; https://doi.org/10.1016/j.clim.2010.06.018
  • Roopenian DC, Christianson GJ, Sproule TJ. Human FcRn transgenic mice for pharmacokinetic evaluation of therapeutic antibodies. Methods Mol Biol 2010; 602:93-104; PMID: 20012394
  • Rashid A, Auchincloss H Jr., Sharon J. Comparison of GK1.5 and chimeric rat/mouse GK1.5 anti-CD4 antibodies for prolongation of skin allograft survival and suppression of alloantibody production in mice. J Immunol 1992; 148:1382-8