8,322
Views
44
CrossRef citations to date
0
Altmetric
Report

Improving titer while maintaining quality of final formulated drug substance via optimization of CHO cell culture conditions in low-iron chemically defined media

ORCID Icon, , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 488-499 | Received 19 Dec 2017, Accepted 13 Jan 2018, Published online: 20 Feb 2018

References

  • Walsh G. Biopharmaceutical benchmarks 2014. Nat Biotechnol. 2014;32(10):992–1000. doi:10.1038/nbt.3040. PMID:25299917.
  • Rohrbach P, Broders O, Toleikis L, Dubel S. Therapeutic antibodies and antibody fusion proteins. Biotechnol Genet Eng Rev. 2003;20:137–63. PubMed. doi:10.1080/02648725.2003.10648041. PMID:14997850.
  • Watier H, Reichert JM. Evolution of antibody therapeutics. In: Vaughn T, Osbourn J, Jallal B, editors. Protein Therapeutics. Weinheim, Germany: Wiley-VCH; 2017. p. 25–49.
  • Scavone C, Sportiello L, Berrino L, Rossi F, Capuano A. Biosimilars in the European Union from comparability exercise to real world experience: what we achieved and what we still need to achieve. Pharmacol Res. 2017;119:265–71. doi:10.1016/j.phrs.2017.02.006. PMID:28214611.
  • von Richter O, Skerjanec A, Afonso M, Sanguino Heinrich S, Poetzl J, Woehling H, Velinova M, Koch A, Kollins D, Macke L, et al. GP2015, a proposed etanercept biosimilar: Pharmacokinetic similarity to its reference product and comparison of its autoinjector device with prefilled syringes. Br J Clin Pharmacol. 2017;83(4):732–41. doi:10.1111/bcp.13170. PMID:27790726.
  • Li F, Vijayasankaran N, Shen AY, Kiss R, Amanullah A. Cell culture processes for monoclonal antibody production. MAbs 2010;2(5):466–79. doi:10.4161/mabs.2.5.12720. PMID:20622510.
  • Rader RA, Langer ES. 30 years of upstream productivity improvements. BioProcess Int. 2015;13(2):10–14.
  • Huang YM, Hu W, Rustandi E, Chang K, Yusuf-Makagiansar H, Ryll T. Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnol Prog. 2010 Sep-Oct;26(5):1400–10. doi:10.1002/btpr.436. PMID:20945494.
  • Takagi Y, Kikuchi T, Wada R, Omasa T. The enhancement of antibody concentration and achievement of high cell density CHO cell cultivation by adding nucleoside. Cytotechnology. 2017;69(3):511–21. doi:10.1007/s10616-017-0066-7. PMID:28251404.
  • Derfus GE, Dizon-Maspat J, Broddrick JT, Velayo AC, Toschi JD, Santuray RT, Hsu SK, Winter CM, Krishnan R, Amanullah A. Red colored IgG4 caused by vitamin B12 from cell culture media combined with disulfide reduction at harvest. MAbs. 2014;6(3):679–88. doi:10.4161/mabs.28257. PMID:24552690.
  • Prentice KM, Gillespie R, Lewis N, Fujimori K, McCoy R, Bach J, Connell-Crowley L, Eakin CM. Hydroxocobalamin association during cell culture results in pink therapeutic proteins. MAbs. 2013;5(6):974–81. doi:10.4161/mabs.25921. PMID:23924851.
  • Vijayasankaran N, Varma S, Yang Y, Mun M, Arevalo S, Gawlitzek M, Swartz T, Lim A, Li F, Zhang B, et al. Effect of cell culture medium components on color of formulated monoclonal antibody drug substance. Biotechnol Prog. 2013;29(5):1270–7. doi:10.1002/btpr.1772. PMID:23804462.
  • Xu J, Jin M, Song H, Huang C, Xu X, Tian J, et al. Brown drug substance color investigation in cell culture manufacturing using chemically defined media: A case study. Process Biochem. 2014;49(1):130–9. doi:10.1016/j.procbio.2013.10.015.
  • Chumsae C, Hossler P, Raharimampionona H, Zhou Y, McDermott S, Racicot C, Radziejewski C, Zhou ZS. When Good Intentions Go Awry: Modification of a Recombinant Monoclonal Antibody in Chemically Defined Cell Culture by Xylosone, an Oxidative Product of Ascorbic Acid. Anal Chem. 2015;87(15):7529–34. doi:10.1021/acs.analchem.5b00801. PMID:26151084.
  • Hossler P, Wang M, McDermott S, Racicot C, Chemfe K, Zhang Y, Chumsae C, Manuilov A. Cell culture media supplementation of bioflavonoids for the targeted reduction of acidic species charge variants on recombinant therapeutic proteins. Biotechnol Prog. 2015 Jul-Aug;31(4):1039–52. doi:10.1002/btpr.2095. PMID:25920009.
  • Kaschak T, Boyd D, Lu F, Derfus G, Kluck B, Nogal B, Emery C, Summers C, Zheng K, Bayer R, et al. Characterization of the basic charge variants of a human IgG1: Effect of copper concentration in cell culture media. MAbs. 2011;3(6):577–83. doi:10.4161/mabs.3.6.17959. PMID:22123059
  • Luo J, Vijayasankaran N, Autsen J, Santuray R, Hudson T, Amanullah A, Li F. Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process. Biotechnol Bioeng. 2012;109(1):146–56. doi:10.1002/bit.23291. PMID:21964570.
  • Pacis E, Yu M, Autsen J, Bayer R, Li F. Effects of cell culture conditions on antibody N-linked glycosylation–what affects high mannose 5 glycoform. Biotechnol Bioeng. 2011;108(10):2348–58. doi:10.1002/bit.23200. PMID:21557201.
  • Sha S, Agarabi C, Brorson K, Lee DY, Yoon S. N-Glycosylation Design and Control of Therapeutic Monoclonal Antibodies. Trends Biotechnol. 2016;34(10):835–46. doi:10.1016/j.tibtech.2016.02.013. PMID:27016033.
  • Huang CJ, Lin H, Yang JX. A robust method for increasing Fc glycan high mannose level of recombinant antibodies. Biotechnol Bioeng. 2015;112(6):1200–9. doi:10.1002/bit.25534. PMID:25565276.
  • Louie S, Haley B, Marshall B, Heidersbach A, Yim M, Brozynski M, Tang D, Lam C, Petryniak B, Shaw D, et al. FX knockout CHO hosts can express desired ratios of fucosylated or afucosylated antibodies with high titers and comparable product quality. Biotechnol Bioeng. 2017;114(3):632–44. doi:10.1002/bit.26188. PMID:27666939.
  • Torkashvand F, Vaziri B. Main Quality Attributes of Monoclonal Antibodies and Effect of Cell Culture Components. Iran Biomed J. 2017;21(3):131–41. PubMed doi:10.18869/acadpub.ibj.21.3.131. PMID:28176518.
  • Wurm FM. CHO Quasispecies—Implications for Manufacturing Processes. Processes. 2013;1:296–311. doi:10.3390/pr1030296.
  • Xu S, Hoshan L, Chen H. Improving lactate metabolism in an intensified CHO culture process: productivity and product quality considerations. Bioprocess and Biosyst Eng. 2016;39:1689–702. doi:10.1007/s00449-016-1644-3.
  • Borys MC, Dalal NG, Abu-Absi NR, Khattak SF, Jing Y, Xing Z, Li ZJ. Effects of culture conditions on N-glycolylneuraminic acid (Neu5Gc) content of a recombinant fusion protein produced in CHO cells. Biotechnol Bioeng. 2010 Apr 15;105(6):1048–57. PMID:20039310.
  • Zhuang C, Zheng C, Chen Y, Huang Z, Wang Y, Fu Q, Zeng C, Wu T, Yang L, Qi N. Different fermentation processes produced variants of an anti-CD52 monoclonal antibody that have divergent in vitro and in vivo characteristics. Appl Microbiol Biotechnol. 2017 Aug;101(15):5997–6006. doi:10.1007/s00253-017-8312-7. PMID:28512676.
  • Aghamohseni H, Spearman M, Ohadi K, Braasch K, Moo-Young M, Butler M, Budman HM. A semi-empirical glycosylation model of a camelid monoclonal antibody under hypothermia cell culture conditions. J Ind Microbiol Biotechnol. 2017 Jul;44(7):1005–20. doi:10.1007/s10295-017-1926-z. PMID:28285402.
  • Kishishita S, Nishikawa T, Shinoda Y, Nagashima H, Okamoto H, Takuma S, Aoyagi H. Effect of temperature shift on levels of acidic charge variants in IgG monoclonal antibodies in Chinese hamster ovary cell culture. J Biosci Bioeng. 2015 Jun;119(6):700–5. doi:10.1016/j.jbiosc.2014.10.028. PMID:25466646.
  • Song H, Xu J, Jin M, Huang C, Bongers J, Bai H, Wu W, Ludwig R, Li Z, Tao L, et al. Investigation of Color in a Fusion Protein Using Advanced Analytical Techniques: Delineating Contributions from Oxidation Products and Process Related Impurities. Pharm Res. 2016;33:932–41. doi:10.1007/s11095-015-1839-3. PMID:26658915.
  • Du C, Martin R, Huang Y, Borwankar A, Tan Z, West J, Singh N, Borys M, Ghose S, Ludwig R, et al. Vitamin B12 association with mAbs: Mechanism and potential mitigation strategies. Biotechnol Bioeng. 2018; In press:1–10. doi:10.1002/bit.26511.
  • Bai Y, Wu C, Zhao J, Liu YH, Ding W, Ling WLW. Role of iron and sodium citrate in animal protein-free CHO cell culture medium on cell growth and monoclonal antibody production. Biotechnol Prog. 2011;27(1):209–19. doi:10.1002/btpr.513. PMID:21312368.
  • Du Y, Walsh A, Ehrick R, Xu W, May K, Liu H. Chromatographic analysis of the acidic and basic species of recombinant monoclonal antibodies. MAbs. 2012;4(5):578–85. doi:10.4161/mabs.21328. PMID:22820257.
  • Li B, Tesar D, Boswell CA, Cahaya HS, Wong A, Zhang J, Meng YG, Eigenbrot C, Pantua H, Diao J, et al. Framework selection can influence pharmacokinetics of a humanized therapeutic antibody through differences in molecule charge. MAbs. 2014;6(5):1255–64. doi:10.4161/mabs.29809. PMID:25517310.
  • Aisen P, Enns C, Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol. 2001;33(10):940–59. doi:10.1016/S1357-2725(01)00063-2. PMID:11470229.
  • Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: Molecular control of mammalian iron metabolism. Cell. 2004;117(3):285–97. doi:10.1016/S0092-8674(04)00343-5. PMID:15109490.
  • Basset P, Zwiller J. Iron-induced L1210 Cell Growth: Evidence of a Transferrin-independent Iron Transport. Cancer Res 1986;46:1644–7. PMID:3948154.
  • Metcalfe H, Field, R. P., Froud, S. J. The use of 2-hydroxy-2, 4, 6- cycloheptarin-1-one (tropolone) as a replacement for transferrin. In: Spier RE GJ, Berthold W, editors. Animal Cell Technology: Products of Today, Prospects of Tomorrow. Oxford, UK: Butterworth- Heinemann; 1994. p. 88–90.
  • Musílková J, Kovář J. Additive stimulatory effect of extracellular calcium and potassium on non-transferrin ferric iron uptake by HeLa and K562 cells. Biochim Biophys Acta. 2001;1514(1):117–26. doi:10.1016/S0005-2736(01)00367-4. PMID:11513809.
  • Sturrock A, Alexander J, Lamb J, Craven CM, Kaplan J. Characterization of a transferrin-independent uptake system for iron in HeLa cells. J Biol Chem. 1990;265(6):3139–45. PMID:2105943.
  • Inman RS, Wessling-Resnick M. Characterization of transferrin-independent iron transport in K562 cells. Unique properties provide evidence for multiple pathways of iron uptake. J Biol Chem. 1993;268(12):8521–8. PMID:8473296.
  • Zhang J, Robinson D, Salmon P. A novel function for selenium in biological system: selenite as a highly effective iron carrier for Chinese hamster ovary cell growth and monoclonal antibody production. Biotechnol Bioeng. 2006;95(6):1188–97. doi:10.1002/bit.21081. PMID:16937407.
  • Neumannova V, Richardson DR, Kriegerbeckova K, Kovar J. Growth of human tumor cell lines in transferrin-free, low-iron medium. In Vitro Cell Dev Biol Anim. 1995;31(8):625–32. doi:10.1007/BF02634316. PMID:8528518.
  • Gawlitzek M, Estacio M, Fürch T, Kiss R. Identification of cell culture conditions to control N-glycosylation site-occupancy of recombinant glycoproteins expressed in CHO cells. Biotech Bioeng. 2009;103(6):1164–75. doi:10.1002/bit.22348.
  • Beckmann TF, Kramer O, Klausing S, Heinrich C, Thute T, Buntemeyer H, Hoffrogge R, Noll T. Effects of high passage cultivation on CHO cells: a global analysis. Appl Microbiol Biotechnol. 2012 May;94(3):659–71. doi:10.1007/s00253-011-3806-1. PMID:22331235.
  • Hassett B, Singh, E, Mahgoub, E, O'Brien, J, Vicik, SM, Fitzpatrick, B. Manufacturing history of etanercept (Enbrel): Consistency of product quality through major process revisions. MAbs. 2018;10(1):159–65. doi:10.1080/19420862.2017.1388483.
  • Lee SY, Kwon YB, Cho JM, Park KH, Chang SJ, Kim DI. Effect of process change from perfusion to fed-batch on product comparability for biosimilar monoclonal antibody. Process Biochem. 2012;47(9):1411–8. doi:10.1016/j.procbio.2012.05.017.
  • Hanning RM, Michell, MK, Atkinson, SA. In Vitro Solubility of Calcium Glycerophosphate Versus Conventional Mineral Salts in Pediatric Parenteral Nutrition Solutions. J Pediatr Gastroenterol and Nutr. 1989;9:67–72. doi:10.1097/00005176-198909010-00013.. PMID:2506324.
  • Xing Z, Kenty B, Koyrakh I, Borys M, Pan SH, Li ZJ. Optimizing amino acid composition of CHO cell culture media for a fusion protein production. Process Biochem. 2011;46(7):1423–9. doi:10.1016/j.procbio.2011.03.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.