2,003
Views
1
CrossRef citations to date
0
Altmetric
Reports

A long non-coding SINEUP RNA boosts semi-stable production of fully human monoclonal antibodies in HEK293E cells

, , , , , , & , PhD show all
Pages 730-737 | Received 25 Jan 2018, Accepted 06 Apr 2018, Published online: 10 May 2018

References

  • Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. mAbs. 2015;7(1):9–14. doi:10.4161/19420862.2015.989042.
  • Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–7. doi:10.1038/256495a0. PMID:1172191.
  • Frenzel A, Hust M, Schirrmann T. Expression of recombinant antibodies. Front Immunol. 2013;4:217. doi:10.3389/fimmu.2013.00217. PMID:23908655.
  • Sheehan J, Marasco WA. Phage and yeast display. Microbiol Spectr. 2015;3(1):AID-0028-2014. doi:10.1128/microbiolspec.AID-0028-2014. PMID:26104550.
  • De Marco A. Recombinant antibody production evolves into multiple options aimed at yielding reagents suitable for application-specific needs. Microb Cell Fact. 2015;14:125. DOI 10.1186/s12934-015-0320-7. PMID:26330219.
  • Kunert R, Reinhart D. Advances in recombinant antibody manufacturing. Appl Microbiol Biotechnol. 2016;100:3451–61. DOI 10.1007/s00253-016-7388-9. PMID:26936774.
  • Dumont J, Euwart D, Mei B, Estes S, Kshirsagar R. Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol. 2016;36(6):1110–22. doi:10.3109/07388551.2015.1084266. PMID:26383226.
  • Croset A, Delafosse L, Gaudry JP, Arod C, Glez L, Losberger C, Begue D, Krstanovic A, Robert F, Vilbois F et al. Differences in the glycosylation of recombinant proteins expressed in HEK and CHO cells. J Biotechnol. 2012;161:336–348. DOI:10.1016/j.jbiotec.2012.06.038.
  • Higel F, Seidl A, Sörgel F, Friess W. N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. Eur J Pharm Biopharm. 2016;100:94–100. doi:10.1016/j.ejpb.2016.01.005. PMID:26775146.
  • Young, JM, Cheadle C, Foulke JS, Jr, Drohan WN, Sarver N. Utilization of an Epstein-Barr virus replicon as a eukaryotic expression vector. Gene. 1988;62:171–85
  • Backliwal G, Hildinger M, Chenuet S, Wulhfard S, De Jesus M, Wurm FM. Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions. Nucleic Acids Res. 2008;36(15):e96. doi:10.1093/nar/gkn423. PMID:18617574.
  • Vink T, Oudshoorn-Dickmann M, Roza M, Reitsma JJ, de Jong RN. A simple, robust and highly efficient transient expression system for producing antibodies. Methods. 2014;65(1):5–10. doi:10.1016/j.ymeth.2013.07.018.
  • Nishimiya D. Proteins improving recombinant antibody production in mammalian cells. Appl Microbiol Biotechnol. 2014;98(3):1031–42. DOI 10.1007/s00253-013-5427-3.
  • Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, Pesce E, Ferrer I, Collavin L, Santoro C, et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature. 2012;491:454–7. doi:10.1038/nature11508. PMID:23064229.
  • Zucchelli S, Fasolo F, Russo R, Cimatti L, Patrucco L, Takahashi H, Jones MH, Santoro C, Sblattero D, Cotella D, et al. SINEUPs are modular antisense long non-coding RNAs that increase synthesis of target proteins in cells. Front Cell Neurosci. 2015;9:174. doi:10.3389/fncel.2015.00174. PMID:26029048.
  • Patrucco L, Chiesa A, Soluri MF, Fasolo F, Takahashi H, Carninci P, Zucchelli S, Santoro C, Gustincich S, Sblattero D, et al. Engineering mammalian cell factories with SINEUP noncoding RNAs to improve translation of secreted proteins. Gene. 2015;569(2):287–93. doi:10.1016/j.gene.2015.05.070.
  • Yao Y, Jin S, Long H, Yu Y, Zhang Z, Cheng G, Xu C, Ding Y, Guan Q, Li N, et al. RNAe: an effective method for targeted protein translation enhancement by artificial non-coding RNA with SINEB2 repeat. Nucleic Acids Res. 2015;43(9):e58. doi:10.1093/nar/gkv125. PMID:2572236.
  • Paciello R, Urbanowicz RA, Riccio G, Sasso E, McClure CP, Zambrano N, Ball JK, Cortese R, Nicosia A, De Lorenzo C. Novel human anti-Claudin 1 monoclonal antibodies inhibit HCV infection and may synergize with anti-SRB1 mAb. J Gen Virol. 2016;97(1):82–94. doi:10.1099/jgv.0.000330. PMID:26519290.
  • Nebija D, Noe CR, Urban E, Lachmann B. Quality Control and stability studies with the monoclonal antibody, Trastuzumab: Application of 1D- vs. 2D-Gel Electrophoresis. Int J Mol Sci. 2014;15:6399–411. doi:10.3390/ijms15046399.
  • Sasso E, Paciello R, D'Auria F, Riccio G, Froechlich G, Cortese R, Nicosia A, De Lorenzo C, Zambrano N. One-step recovery of scFv Clones from high-throughput sequencing-based screening of phage display libraries challenged to cells expressing native Claudin-1. BioMed Res Int. 2015;2015:703213. doi:10.1155/2015/703213. PMID:26649313.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8
  • Monteleone F, Rosa R, Vitale M, D'Ambrosio C, Succoio M, Formisano L, Nappi L, Romano MF, Scaloni A, Tortora G, Bianco R, Zambrano N. Increased anaerobic metabolism is a distinctive signature in a colorectal cancer cellular model of resistance to antiepidermal growth factor receptor antibody. Proteomics. 2013;13(5):866–77. doi:10.1002/pmic.201200303. PMID:23281225.