4,738
Views
44
CrossRef citations to date
0
Altmetric
Report

Comprehensive characterization of monoclonal antibody by Fourier transform ion cyclotron resonance mass spectrometry

ORCID Icon, ORCID Icon, ORCID Icon, , , , & ORCID Icon show all
Pages 106-115 | Received 11 Jul 2018, Accepted 12 Sep 2018, Published online: 22 Dec 2018

References

  • Carter PJ, Lazar GA. 2017. Next generation antibody drugs: pursuit of the ‘high-hanging fruit’. Nat Rev Drug Discov. 17:197–223. doi:10.1038/nrd.2017.227.
  • Ecker DM, Jones SD, Levine HL. 2015. The therapeutic monoclonal antibody market. Mabs-Austin. 7:9–14. doi:10.4161/19420862.2015.989042.
  • Chames P, Van Regenmortel M, Weiss E, Baty D. 2009. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol. 157:220–233. doi:10.1111/j.1476-5381.2009.00190.x.
  • Weiner GJ. 2015. Building better monoclonal antibody-based therapeutics. Nat Rev Cancer. 15:361–370. doi:10.1038/nrc3930.
  • Kaplon H, Reichert JM. 2018. Antibodies to watch in 2018. Mabs-Austin. 10:183–203. doi:10.1080/19420862.2018.1415671.
  • Reichert JM. 2012. Marketed therapeutic antibodies compendium. Mabs-Austin. 4:413–415. doi:10.4161/mabs.19931.
  • Breedveld FC. Therapeutic monoclonal antibodies. Lancet. 355;2000:735–740.
  • Liu HC, Gaza-Bulseco G, Faldu D, Chumsae C, Sun J. 2008. Heterogeneity of monoclonal antibodies. J Pharm Sci-Us. 97:2426–2447. doi:10.1002/jps.21180.
  • Wang W, Singh S, Zeng DL, King K, Nema S. 2007. Antibody structure, instability, and formulation. J Pharm Sci-Us. 96:1–26. doi:10.1002/jps.20727.
  • Mukherjee R, Adhikary L, Khedkar A, Iyer H. 2010. Probing deamidation in therapeutic immunoglobulin gamma (IgG1) by ‘bottom-up’ mass spectrometry with electron transfer dissociation. Rapid Commun Mass Sp. 24:879–884. doi:10.1002/rcm.4464.
  • Ladwig PM, Barnidge DR, Willrich MAV. Mass spectrometry approaches for identification and quantitation of therapeutic monoclonal antibodies in the clinical laboratory. Clin Vaccine Immunol. 2017;24. doi:10.1128/CVI.00545-16.
  • Zhang ZQ, Pan H, Chen XY. 2009. Mass spectrometry for structural characterization of therapeutic antibodies. Mass Spectrom Rev. 28:147–176. doi:10.1002/mas.20190.
  • Rogstad S, Faustino A, Ruth A, Keire D, Boyne M, Park J. 2017. A retrospective evaluation of the use of mass spectrometry in FDA biologics license applications. J Am Soc Mass Spectr. 28:786–794. doi:10.1007/s13361-016-1531-9.
  • Beck A, Sanglier-Cianferani S, Van Dorsselaer A. 2012. Biosimilar, biobetter, and next generation antibody characterization by mass spectrometry. Anal Chem. 84:4637–4646. doi:10.1021/ac3002885.
  • Mazur MT, Seipert RS, Mahon D, Zhou QW, Liu T. 2012. A platform for characterizing therapeutic monoclonal antibody breakdown products by 2D chromatography and top-down mass spectrometry. Aaps J. 14:530–541. doi:10.1208/s12248-012-9361-6.
  • Beck A, Debaene F, Diemer H, Wagner-Rousset E, Colas O, Van Dorsselaer A, Cianferani S. Cutting-edge mass spectrometry characterization of originator, biosimilar and biobetter antibodies. J Mass Spectrom. 2015;50:285–297. doi:10.1002/jms.3554.
  • Ren D, Pipes GD, Liu DJ, Shih LY, Nichols AC, Treuheit MJ, Brems DN, Bondarenko PV. An improved trypsin digestion method minimizes digestion-induced modifications on proteins. Anal Biochem. 2009;392:12–21. doi:10.1016/j.ab.2009.05.018.
  • Chait BT. 2006. Mass spectrometry: bottom-up or top-down? Science. 314:65–66. doi:10.1126/science.1133987.
  • Smith LM, Kelleher NL, Proteomics CTD. 2013. Proteoform: a single term describing protein complexity. Nat Methods. 10:186–187. doi:10.1038/nmeth.2369.
  • Jin YT, Peng Y, Lin ZQ, Chen YC, Wei LM, Hacker TA, Larsson L, Ge Y. Comprehensive analysis of tropomyosin isoforms in skeletal muscles by top-down proteomics. J Muscle Res Cell M. 2016;37:41–52. doi:10.1007/s10974-016-9443-7.
  • Mao Y, Valeja SG, Rouse JC, Hendrickson CL, Marshall AG. 2013. Top-down structural analysis of an intact monoclonal antibody by electron capture Dissociation-Fourier Transform ion cyclotron resonance-mass spectrometry. Anal Chem. 85:4239–4246. doi:10.1021/ac303525n.
  • Tsybin YO, Fornelli L, Stoermer C, Luebeck M, Parra J, Nallet S, Wurm FM, Hartmer R. Structural analysis of intact monoclonal antibodies by electron transfer dissociation mass spectrometry. Anal Chem. 2011;83:8919–8927. doi:10.1021/ac201293m.
  • Nicolardi S, Deelder AM, Palmblad M, van der Burgt YEM. 2014. Structural analysis of an intact monoclonal antibody by online electrochemical reduction of disulfide bonds and Fourier Transform ion cyclotron resonance mass spectrometry. Anal Chem. 86:5376–5382. doi:10.1021/ac500383c.
  • Fornelli L, Damoc E, Thomas PM, Kelleher NL, Aizikov K, Denisov E, Makarov A, Tsybin YO. Analysis of intact monoclonal antibody IgG1 by electron transfer dissociation orbitrap FTMS. Mol Cell Proteomics. 2012;11:1758–1767. doi:10.1074/mcp.M112.019620.
  • Fornelli L, Ayoub D, Aizikov K, Beck A, Tsybin YO. 2014. Middle-down analysis of monoclonal antibodies with electron transfer dissociation orbitrap fourier transform mass spectrometry. Anal Chem. 86:3005–3012. doi:10.1021/ac4036857.
  • Cotham VC, Brodbelt JS. 2016. Characterization of therapeutic monoclonal antibodies at the subunit-level using middle-down 193 nm ultraviolet photodissociation. Anal Chem. 88:4004–4013. doi:10.1021/acs.analchem.6b00302.
  • Fornelli L, Srzentic K, Huguet R, Mullen C, Sharma S, Zabrouskov V, Fellers RT, Durbin KR, Compton PD, Kelleher NL. Accurate sequence analysis of a monoclonal antibody by top-down and middle-down orbitrap mass spectrometry applying multiple ion activation techniques. Anal Chem. 2018;90:8421–8429. doi:10.1021/acs.analchem.8b00984.
  • Jin YT, Wei LM, Cai WX, Lin ZQ, Wu ZJ, Peng Y, Kohmoto T, Moss RL, Ge Y. Complete characterization of cardiac myosin heavy chain (223 kDa) enabled by size-exclusion chromatography and middle-down mass spectrometry. Anal Chem. 2017;89:4922–4930. doi:10.1021/acs.analchem.7b00113.
  • Cannon J, Lohnes K, Wynne C, Wang Y, Edwards N, Fenselau C. 2010. High-throughput middle-down analysis using an orbitrap. J Proteome Res. 9:3886–3890. doi:10.1021/pr1000994.
  • Siuti N, Kelleher NL. 2007. Decoding protein modifications using top-down mass spectrometry. Nat Methods. 4:817–821. doi:10.1038/nmeth1097.
  • He LD, Anderson LC, Barnidge DR, Murray DL, Hendrickson CL, Marshall AG. 2017. Analysis of monoclonal antibodies in human serum as a model for clinical monoclonal gammopathy by use of 21 Tesla FT-ICR top-down and middle-down MS/MS (vol 28, pg 827, 2017). J Am Soc Mass Spectr. 28:839. doi:10.1007/s13361-017-1652-9.
  • Kaltashov IA, Bobst CE, Abzalimov RR, Wang GB, Baykal B, Wang SH. 2012. Advances and challenges in analytical characterization of biotechnology products: mass spectrometry-based approaches to study properties and behavior of protein therapeutics. Biotechnol Adv. 30:210–222. doi:10.1016/j.biotechadv.2011.05.006.
  • Tran BQ, Barton C, Feng JH, Sandjong A, Yoon SH, Awasthi S, Liang T, Khan MM, Kilgour DPA, Goodlett DR, et al. Comprehensive glycosylation profiling of IgG and IgG-fusion proteins by top-down MS with multiple fragmentation techniques. J Proteomics. 2016;134:93–101. doi:10.1016/j.jprot.2015.10.021.
  • Zhang H, Cui WD, Gross ML. 2014. Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies. Febs Lett. 588:308–317. doi:10.1016/j.febslet.2013.11.027.
  • Mann M, Kelleher NL. 2008. Precision proteomics: the case for high resolution and high mass accuracy. Proc Natl Acad Sci U S A. 105:18132–18138. doi:10.1073/pnas.0800788105.
  • Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianferani S. 2013. Characterization of therapeutic antibodies and related products. Anal Chem. 85:715–736. doi:10.1021/ac3032355.
  • Valeja SG, Kaiser NK, Xian F, Hendrickson CL, Rouse JC, Marshall AG. 2011. Unit mass baseline resolution for an intact 148 kDa therapeutic monoclonal antibody by Fourier Transform ion cyclotron resonance mass spectrometry. Anal Chem. 83:8391–8395. doi:10.1021/ac202429c.
  • Cai WX, Guner H, Gregorich ZR, Chen AJ, Ayaz-Guner S, Peng Y, Valeja SG, Liu XW, Ge Y. MASH Suite Pro: A comprehensive software tool for top-down proteomics. Mol Cell Proteomics. 2016;15:703–714. doi:10.1074/mcp.O115.054387.
  • Johnson KA, Paisley-Flango K, Tangarone BS, Porter TJ, Rouse JC. 2007. Cation exchange-HPLC and mass spectrometry reveal C-terminal amidation of an IgG1 heavy chain. Anal Biochem. 360:75–83. doi:10.1016/j.ab.2006.10.012.
  • Luo J, Zhang J, Ren DY, Tsai WL, Li F, Amanullah A, Hudson T. Probing of C-terminal lysine variation in a recombinant monoclonal antibody production using Chinese hamster ovary cells with chemically defined media. Biotechnol Bioeng. 2012;109:2306–2315. doi:10.1002/bit.24510.
  • Kaschak T, Boyd D, Lu F, Derfus G, Kluck B, Nogal B, Emery C, Summers C, Zheng K, Bayer R, et al. Characterization of the basic charge variants of a human IgG1 Effect of copper concentration in cell culture media. Mabs-Austin. 2011;3:577–583. doi:10.4161/mabs.3.6.17959.
  • Tsubaki M, Terashima I, Kamata K, Koga A. 2013. C-terminal modification of monoclonal antibody drugs: amidated species as a general product-related substance. Int J Biol Macromol. 52:139–147. doi:10.1016/j.ijbiomac.2012.09.016.
  • Dada OO, Jaya N, Valliere-Douglass J, Salas-Solano O. 2015. Characterization of acidic and basic variants of IgG1 therapeutic monoclonal antibodies based on non-denaturing IEF fractionation. Electrophoresis. 36:2695–2702. doi:10.1002/elps.201500219.
  • Campuzano IDG, Netirojjanakul C, Nshanian M, Lippens JL, Kilgour DPA, Van Orden S, Loo JA. Native-MS analysis of monoclonal antibody conjugates by Fourier Transform ion cyclotron resonance mass spectrometry. Anal Chem. 2018;90:745–751. doi:10.1021/acs.analchem.7b03021.
  • Xu W, Jimenez RB, Mowery R, Luo H, Cao M, Agarwal N, Ramos I, Wang X, Wang J. A Quadrupole Dalton-based multi-attribute method for product characterization, process development, and quality control of therapeutic proteins. Mabs-Austin. 2017;9:1186–1196. doi:10.1080/19420862.2017.1364326.
  • Rogers RS, Abernathy M, Richardson DD, Rouse JC, Sperry JB, Swann P, Wypych J, Yu C, Zang L, Deshpande R. A View on the Importance of “Multi-Attribute Method” for measuring purity of biopharmaceuticals and improving overall control strategy. Aaps J. 2017;20:7. doi:10.1208/s12248-017-0168-3.
  • Rogers RS, Nightlinger NS, Livingston B, Campbell P, Bailey R, Balland A. 2015. Development of a quantitative mass spectrometry multi-attribute method for characterization, quality control testing and disposition of biologics. Mabs-Austin. 7:881–890. doi:10.1080/19420862.2015.1069454.