10,850
Views
23
CrossRef citations to date
0
Altmetric
Report

Detection and quantification of free sulfhydryls in monoclonal antibodies using maleimide labeling and mass spectrometry

ORCID Icon & ORCID Icon
Pages 757-766 | Received 03 Dec 2018, Accepted 08 Mar 2019, Published online: 16 Apr 2019

References

  • Lakbub JC, Shipman JT, Desaire H. Recent mass spectrometry-based techniques and considerations for disulfide bond characterization in proteins. Anal Bioanal Chem. 2018;410(10):2467–84. doi:10.1007/s00216-017-0772-1.
  • Tsai PL, Chen S-F, Huang SY. Mass spectrometry-based strategies for protein disulfide bond identification. Rev Anal Chem. 2013;32(4):257–68. doi:10.1515/revac-2013-0011.
  • Harris RJ. Heterogeneity of recombinant antibodies: linking structure to function. In: Mire-Sluis AR, editor. State of the art analytical methods for the characterization of biological products and assessment of comparability. Basel (Switzerland): Karger; 2005. p. 117–27.
  • Trivedi MV, Laurence JS, Siahaan TJ. The role of thiols and disulfides on protein stability. Curr Protein Pept Sci. 2009;10(6):614–25. doi:10.2174/138920309789630534.
  • Buchanan A, Clementel V, Woods R, Harn N, Bowen MA, Mo W, Popovic B, Bishop SM, Dall’Acqua W, Minter R, et al. Engineering a therapeutic igg molecule to address cysteinylation, aggregation and enhance thermal stability and expression. MAbs. 2013;5(2):255–62. doi:10.4161/mabs.23392.
  • Lacy ER, Baker M, Brigham-Burke M. Free sulfhydryl measurement as an indicator of antibody stability. Anal Biochem. 2008;382(1):66–68. doi:10.1016/j.ab.2008.07.016.
  • Chung WK, Russell B, Yang Y, Handlogten M, Hudak S, Cao M, Wang J, Robbins D, Ahuja S, Zhu M. Effects of antibody disulfide bond reduction on purification process performance and final drug substance stability. Biotechnol Bioeng. 2017;114(6):1264–74. doi:10.1002/bit.26265.
  • AlDeghaither D, Smaglo BG, Weiner LM. Beyond peptides and mabs–current status and future perspectives for biotherapeutics with novel constructs. J Clin Pharmacol. 2015;55(Suppl 3):S4–20. doi:10.1002/jcph.407.
  • Liu H, May K. Disulfide bond structures of igg molecules: structural variations, chemical modifications and possible impacts to stability and biological function. MAbs. 2012;4(1):17–23. doi:10.4161/mabs.4.1.18347.
  • Zhang W, Czupryn MJ. Free sulfhydryl in recombinant monoclonal antibodies. Biotechnol Prog. 2002;18(3):509–13. doi:10.1021/bp025511z.
  • Zhang T, Zhang J, Hewitt D, Tran B, Gao X, Qiu ZJ, Tejada M, Gazzano-Santoro H, Kao YH. Identification and characterization of buried unpaired cysteines in a recombinant monoclonal igg1 antibody. Anal Chem. 2012;84(16):7112–23. doi:10.1021/ac301426h.
  • Buchwald BM, Connell GE. Thiol groups of normal human immunoglobulin g. Biochem J. 1974;137:281–89.
  • Ouellette D, Alessandri L, Chin A, Grinnell C, Tarcsa E, Radziejewski C, Correia I. Studies in serum support rapid formation of disulfide bond between unpaired cysteine residues in the vh domain of an immunoglobulin g1 molecule. Anal Biochem. 2010;397(1):37–47. doi:10.1016/j.ab.2009.09.027.
  • Chumsae C, Gaza-Bulseco G, Liu H. Identification and localization of unpaired cysteine residues in monoclonal antibodies by fluorescence labeling and mass spectrometry. Anal Chem. 2009;81(15):6449–57. doi:10.1021/ac900815z.
  • Schauenstein E, Sorger S, Reiter M, Dachs F. Free thiol groups and labile disulfide bonds in the igg fraction of human serum. J Immunol Methods. 1982;50:51–56.
  • Luks CI, Connell GE. Aggregation of an immunoglobulin fragment by sulfhydryl oxidation. Can J Biochem. 1968;46:961–64.
  • Huh JH, White AJ, Brych SR, Franey H, Matsumura M. The identification of free cysteine residues within antibodies and a potential role for free cysteine residues in covalent aggregation because of agitation stress. J Pharm Sci. 2013;102(6):1701–11. doi:10.1002/jps.23505.
  • Moritz B, Stracke JO. Assessment of disulfide and hinge modifications in monoclonal antibodies. Electrophoresis. 2017;38(6):769–85. doi:10.1002/elps.201600425.
  • Trexler-Schmidt M, Sargis S, Chiu J, Sze-Khoo S, Mun M, Kao YH, Laird MW. Identification and prevention of antibody disulfide bond reduction during cell culture manufacturing. Biotechnol Bioeng. 2010;106(3):452–61. doi:10.1002/bit.22699.
  • Kao YH, Hewitt DP, Trexler-Schmidt M, Laird MW. Mechanism of antibody reduction in cell culture production processes. Biotechnol Bioeng. 2010;107(4):622–32. doi:10.1002/bit.22848.
  • Zabetakis D, Olson MA, Anderson GP, Legler PM, Goldman ER. Evaluation of disulfide bond position to enhance the thermal stability of a highly stable single domain antibody. PLoS One. 2014;9(12):e115405. doi:10.1371/journal.pone.0115405.
  • Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, Chen Y, Simpson M, Tsai SP, Dennis MS, et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008;26(8):925–32. doi:10.1038/nbt.1480.
  • Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–77.
  • Singh R, Blattler WA, Collinson AR. Assay for thiols based on reactivation of papain. In: Packer L, editor. Biothiols part a monothiols and dithiols, protein thiols, and thiyl radicals. San Diego (USA): Academic Press; 1995. p. 229–37.
  • Wu CW, Yarbrough LR. N-(1-pyrene)maleimide: A fluorescent cross-linking reagent. Biochemistry. 1976;15:2863–68.
  • Faid V, Leblanc Y, Bihoreau N, Chevreux G. Middle-up analysis of monoclonal antibodies after combined igde and ides hinge proteolysis: investigation of free sulfhydryls. J Pharm Biomed Anal. 2018;149:541–46. doi:10.1016/j.jpba.2017.11.046.
  • Xiang T, Chumsae C, Liu H. Localization and quantitation of free sulfhydryl in recombinant monoclonal antibodies by differential labeling with 12c and 13c iodoacetic acid and lc-ms analysis. Anal Chem. 2009;81(19):8101–08. doi:10.1021/ac901311y.
  • Cheng Y, Chen MT, Patterson LC, Yu XC, Zhang YT, Burgess BL, Chen Y. Domain-specific free thiol variant characterization of an igg1 by reversed-phase high-performance liquid chromatography mass spectrometry. Anal Biochem. 2017;519:8–14. doi:10.1016/j.ab.2016.12.003.
  • Sung WC, Chang CW, Huang SY, Wei TY, Huang YL, Lin YH, Chen HM, Chen SF. Evaluation of disulfide scrambling during the enzymatic digestion of bevacizumab at various ph values using mass spectrometry. Biochim Biophys Acta. 2016;1864(9):1188–94. doi:10.1016/j.bbapap.2016.05.011.
  • Thermo Scientific. Thermo scientific crosslinking technical handbook. Waltham (USA): Thermo Scientific; 2012. Thermo Scientific Brochure 1602163.
  • Winters RA, Zukowski J, Ercal N, Matthews RH, Spitz DR. Analysis of glutathione, glutathione disulfide, cysteine, homocysteine, and other biological thiols by high-performance liquid chromatography following derivatization by n-(1-pyrenyl)maleimide. Anal Biochem. 1995;227(1):14–21. doi:10.1006/abio.1995.1246.
  • Singh R, Blattler WA, Collinson AR. An amplified assay for thiols based on reactivation of papain. Anal Biochem. 1993;213(1):49–56. doi:10.1006/abio.1993.1384.
  • Hambling SG, McAlpine AS, Sawyer L. β-lactoglobulin. In: Fox PF, editor. Advanced dairy chemistry. London (New York): Elsevier Applied Science; 1992. p. 141–90.
  • Brewer C, Riehm J. Evidence for possible nonspecific reactions between n-ethylmaleimide and proteins. Anal Biochem. 1967;18:248–55. doi:10.1016/0003-2697(67)90007-3.
  • Baldwin AD, Kiick KL. Tunable degradation of maleimide-thiol adducts in reducing environments. Bioconjug Chem. 2011;22(10):1946–53. doi:10.1021/bc200148v.
  • Fontaine SD, Reid R, Robinson L, Ashley GW, Santi DV. Long-term stabilization of maleimide-thiol conjugates. Bioconjug Chem. 2015;26(1):145–52. doi:10.1021/bc5005262.
  • Shafer DE, Inman JK, Lees A. Reaction of tris(2-carboxyethyl)phosphine (tcep) with maleimide and alpha-haloacyl groups: anomalous elution of tcep by gel filtration. Anal Biochem. 2000;282(1):161–64. doi:10.1006/abio.2000.4609.
  • Haqqani AS, Kelly JF, Stanimirovic DB. Quantitative protein profiling by mass spectrometry using label-free proteomics. Methods Mol Biol. 2008;439:241–56. doi:10.1007/978-1-59745-188-8_17.