5,348
Views
17
CrossRef citations to date
0
Altmetric
Report

An anti-apoptotic HEK293 cell line provides a robust and high titer platform for transient protein expression in bioreactors

ORCID Icon, , ORCID Icon &
Pages 977-986 | Received 09 Jan 2019, Accepted 18 Mar 2019, Published online: 24 Apr 2019

References

  • Kaplon H, Reichert JM. Antibodies to watch in 2019. MAbs. 2019;11(2):219–38. doi:10.1080/19420862.2018.1556465.
  • Singh S, Kumar NK, Dwiwedi P, Charan J, Kaur R, Sidhu P, Chugh VK. Monoclonal antibodies: a review. Curr Clin Pharmacol. 2018;13(2):85–99. doi:10.2174/1574884712666170809124728.
  • Ecker DM, Jones SD, Levine HL. The therapeutic monoclonal antibody market. MAbs. 2015;7(1):9–14. doi:10.4161/19420862.2015.989042.
  • Baldi L, Hacker DL, Adam M, Wurm FM. Recombinant protein production by large-scale transient gene expression in mammalian cells: state of the art and future perspectives. Biotechnol Lett. 2007;29(5):677–84. doi:10.1007/s10529-006-9297-y.
  • Hacker DL, Kiseljak D, Rajendra Y, Thurnheer S, Baldi L, Wurm FM. Polyethyleneimine-based transient gene expression processes for suspension-adapted hek-293e and cho-dg44 cells. Protein Expr Purif. 2013;92(1):67–76. doi:10.1016/j.pep.2013.09.001.
  • Stuible M, Burlacu A, Perret S, Brochu D, Paul-Roc B, Baardsnes J, Loignon M, Grazzini E, Durocher Y. Optimization of a high-cell-density polyethylenimine transfection method for rapid protein production in cho-ebna1 cells. J Biotechnol. 2018;281:39–47. doi:10.1016/j.jbiotec.2018.06.307.
  • Longo PA, Kavran JM, Kim MS, Leahy DJ. Transient mammalian cell transfection with polyethylenimine (pei). Methods Enzymol. 2013;529:227–40. doi:10.1016/B978-0-12-418687-3.00018-5.
  • Rajendra Y, Kiseljak D, Baldi L, Wurm FM, Hacker DL. Transcriptional and post-transcriptional limitations of high-yielding, pei-mediated transient transfection with cho and hek-293e cells. Biotechnol Prog. 2015;31(2):541–49. doi:10.1002/btpr.2064.
  • Ding K, Han L, Zong H, Chen J, Zhang B, Zhu J. Production process reproducibility and product quality consistency of transient gene expression in hek293 cells with anti-pd1 antibody as the model protein. Appl Microbiol Biotechnol. 2017;101(5):1889–98. doi:10.1007/s00253-016-7973-y.
  • Delafosse L, Xu P, Durocher Y. Comparative study of polyethylenimines for transient gene expression in mammalian hek293 and cho cells. J Biotechnol. 2016;227:103–11. doi:10.1016/j.jbiotec.2016.04.028.
  • Chiou HC, Vasu S, Liu CY, Cisneros I, Jones MB, Zmuda JF. Scalable transient protein expression. In: Pörtner R, editor. Animal cell biotechnology: methods and protocols. Totowa (NJ): Humana Press; 2014. p. 35–55.
  • Vink T, Oudshoorn-Dickmann M, Roza M, Reitsma JJ, de Jong RN. A simple, robust and highly efficient transient expression system for producing antibodies. Methods. 2014;65(1):5–10. doi:10.1016/j.ymeth.2013.07.018.
  • Bos AB, Luan P, Duque JN, Reilly D, Harms PD, Wong AW. Optimization and automation of an end-to-end high throughput microscale transient protein production process. Biotechnol Bioeng. 2015;112(9):1832–42. doi:10.1002/bit.25601.
  • Bos AB, Duque JN, Bhakta S, Farahi F, Chirdon LA, Junutula JR, Harms PD, Wong AW. Development of a semi-automated high throughput transient transfection system. J Biotechnol. 2014;180:10–16. doi:10.1016/j.jbiotec.2014.03.027.
  • Zhao Y, Bishop B, Clay JE, Lu W, Jones M, Daenke S, Siebold C, Stuart DI, Yvonne Jones E, Radu Aricescu A. Automation of large scale transient protein expression in mammalian cells. J Struct Biol. 2011;175(2):209–15. doi:10.1016/j.jsb.2011.04.017.
  • Girard P, Jordan M, Tsao M, Wurm FM. Small-scale bioreactor system for process development and optimization. Biochem Eng J. 2001;7:117–19.
  • Raymond C, Tom R, Perret S, Moussouami P, L‘Abbe D, St-Laurent G, Durocher Y. A simplified polyethylenimine-mediated transfection process for large-scale and high-throughput applications. Methods. 2011;55(1):44–51. doi:10.1016/j.ymeth.2011.04.002.
  • Nettleship JE, Assenberg R, Diprose JM, Rahman-Huq N, Owens RJ. Recent advances in the production of proteins in insect and mammalian cells for structural biology. J Struct Biol. 2010;172(1):55–65. doi:10.1016/j.jsb.2010.02.006.
  • Tuvesson O, Uhe C, Rozkov A, Lullau E. Development of a generic transient transfection process at 100 l scale. Cytotechnology. 2008;56(2):123–36. doi:10.1007/s10616-008-9135-2.
  • Geisse S, Henke M. Large-scale transient transfection of mammalian cells: a newly emerging attractive option for recombinant protein production. J Struct Funct Genomics. 2005;6(2–3):165–70. doi:10.1007/s10969-005-2826-4.
  • Baldi L, Muller N, Picasso S, Jacquet R, Girard P, Thanh HP, Derow E, Wurm FM. Transient gene expression in suspension hek-293 cells: application to large-scale protein production. Biotechnol Prog. 2005;21(1):148–53. doi:10.1021/bp049830x.
  • Pham PL, Perret S, Doan HC, Cass B, St-Laurent G, Kamen A, Durocher Y. Large-scale transient transfection of serum-free suspension-growing hek293 ebna1 cells: peptone additives improve cell growth and transfection efficiency. Biotechnol Bioeng. 2003;84(3):332–42. doi:10.1002/bit.10774.
  • Girard P, Derouazi M, Baumgartner G, Bourgeois M, Jordan M, Jacko B, Wurm FM. 100-liter transient transfection. Cytotechnology. 2002;38(1–3):15–21. doi:10.1023/A:1021173124640.
  • Durocher Y, Perret S, Kamen A. High-level and high-throughput recombinant protein production by transient transfection of suspension-growing human 293-ebna1 cells. Nucleic Acids Res. 2002;30(2):E9. doi:10.1093/nar/30.2.e9.
  • Fliedl L, Kaisermayer C. Transient gene expression in hek293 and vero cells immobilised on microcarriers. J Biotechnol. 2011;153(1–2):15–21. doi:10.1016/j.jbiotec.2011.02.007.
  • Ho L, Greene CL, Schmidt AW, Huang LH. Cultivation of hek 293 cell line and production of a member of the superfamily of g-protein coupled receptors for drug discovery applications using a highly efficient novel bioreactor. Cytotechnology. 2004;45(3):117–23. doi:10.1007/s10616-004-6402-8.
  • Meissner P, Pick H, Kulangara A, Chatellard P, Friedrich K, Wurm FM. Transient gene expression: recombinant protein production with suspension-adapted hek293-ebna cells. Biotechnol Bioeng. 2001;75:197–203.
  • Mohd Zin NK, Sakaguchi K, Haraguchi Y, Takahashi A, Suzuki S, Yagi T, Shimizu T, Umezu M. Controlling shear stress in a suspension culture using couette flow forefficient proliferation of hek 293 cells. Fluid Mech. 2016;3:1–5.
  • Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9:231–41.
  • Macaraeg NF, Reilly DE, Wong AW. Use of an anti-apoptotic cho cell line for transient gene expression. Biotechnol Prog. 2013;29(4):1050–58. doi:10.1002/btpr.1763.
  • Lim SF, Chuan KH, Liu S, Loh SO, Chung BY, Ong CC, Song Z. Rnai suppression of bax and bak enhances viability in fed-batch cultures of cho cells. Metab Eng. 2006;8(6):509–22. doi:10.1016/j.ymben.2006.05.005.
  • Grav LM, Lee JS, Gerling S, Kallehauge TB, Hansen AH, Kol S, Lee GM, Pedersen LE, Kildegaard HF. One-step generation of triple knockout cho cell lines using crispr/cas9 and fluorescent enrichment. Biotechnol J. 2015;10(9):1446–56. doi:10.1002/biot.201500027.
  • Cost GJ, Freyvert Y, Vafiadis A, Santiago Y, Miller JC, Rebar E, Collingwood TN, Snowden A, Gregory PD. Bak and bax deletion using zinc-finger nucleases yields apoptosis-resistant cho cells. Biotechnol Bioeng. 2010;105(2):330–40. doi:10.1002/bit.22541.
  • Liste-Calleja L, Lecina M, Lopez-Repullo J, Albiol J, Sola C, Cairo JJ. Lactate and glucose concomitant consumption as a self-regulated ph detoxification mechanism in hek293 cell cultures. Appl Microbiol Biotechnol. 2015;99(23):9951–60. doi:10.1007/s00253-015-6855-z.
  • Wales R, Lewis G. Novel automated micro-scale bioreactor technology: a qualitative and quantitative mimic for early process development. Bioprocess J. 2010;9:22–25. doi:10.12665/issn.1538-8786.
  • Hsu WT, Aulakh RP, Traul DL, Yuk IH. Advanced microscale bioreactor system: a representative scale-down model for bench-top bioreactors. Cytotechnology. 2012;64(6):667–78. doi:10.1007/s10616-012-9446-1.
  • Sokolov M, Ritscher J, MacKinnon N, Souquet J, Broly H, Morbidelli M, Butte A. Enhanced process understanding and multivariate prediction of the relationship between cell culture process and monoclonal antibody quality. Biotechnol Prog. 2017;33(5):1368–80. doi:10.1002/btpr.2502.
  • Rameez S, Mostafa SS, Miller C, Shukla AA. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control. Biotechnol Prog. 2014;30(3):718–27. doi:10.1002/btpr.1874.
  • Janakiraman V, Kwiatkowski C, Kshirsagar R, Ryll T, Huang YM. Application of high-throughput mini-bioreactor system for systematic scale-down modeling, process characterization, and control strategy development. Biotechnol Prog. 2015;31(6):1623–32. doi:10.1002/btpr.2162.
  • Ma N, Koelling KW, Chalmers JJ. Fabrication and use of a transient contractional flow device to quantify the sensitivity of mammalian and insect cells to hydrodynamic forces. Biotechnol Bioeng. 2002;80(4):428–37. doi:10.1002/bit.10387.
  • Mollet M, Godoy-Silva R, Berdugo C, Chalmers JJ. Acute hydrodynamic forces and apoptosis: a complex question. Biotechnol Bioeng. 2007;98(4):772–88. doi:10.1002/bit.21476.
  • Choosakoonkriang S, Lobo BA, Koe GS, Koe JG, Middaugh CR. Biophysical characterization of pei/DNA complexes. J Pharm Sci. 2003;92(8):1710–22. doi:10.1002/jps.10437.
  • Bertschinger M, Schertenleib A, Cevey J, Hacker DL, Wurm FM. The kinetics of polyethylenimine-mediated transfection in suspension cultures of chinese hamster ovary cells. Mol Biotechnol. 2008;40(2):136–43. doi:10.1007/s12033-008-9069-0.
  • Li F, Vijayasankaran N, Shen A, Kiss R, Amanullah A. Cell culture processes for monoclonal antibody production. mAbs. 2010;2:466–77.
  • Li J, Wong CL, Vijayasankaran N, Hudson T, Amanullah A. Feeding lactate for cho cell culture processes: impact on culture metabolism and performance. Biotechnol Bioeng. 2012;109(5):1173–86. doi:10.1002/bit.24389.
  • Yuk IH, Baskar D, Duffy PH, Hsiung J, Leung S, Lin AA. Overcoming challenges in wave bioreactors without feedback controls for ph and dissolved oxygen. Biotechnol Prog. 2011;27(5):1397–406. doi:10.1002/btpr.659.
  • Rockberg J, Zhan C, Malm M, Schwarz H, Lundqvist M, Shokri A, Field R, Turner R, Chotteau V 2018. Production of biopharmaceuticals in an intensified perfusion process of hek 293 cells. Paper presented at: Cell Culture Engineering XVI. Tampa (Florida, USA).
  • Misaghi S, Qu Y, Snowden A, Chang J, Snedecor B. Resilient immortals, characterizing and utilizing bax/bak deficient chinese hamster ovary (cho) cells for high titer antibody production. Biotechnol Prog. 2013;29(3):727–37. doi:10.1002/btpr.1722.
  • Nagata E, Luo HR, Saiardi A, Bae BI, Suzuki N, Snyder SH. Inositol hexakisphosphate kinase-2, a physiologic mediator of cell death. J Biol Chem. 2005;280(2):1634–40. doi:10.1074/jbc.M409416200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.