4,027
Views
3
CrossRef citations to date
0
Altmetric
Review

The therapeutic potential of sialylated Fc domains of human IgG

ORCID Icon
Article: 1953220 | Received 01 Apr 2021, Accepted 05 Jul 2021, Published online: 21 Jul 2021

References

  • Schauer R, Kamerling JP. Exploration of the Sialic Acid world. Adv Carbohydr Chem Biochem. 2018;75:1–12.
  • Dalziel M, Crispin M, Scanlan CN, Zitzmann N, Dwek RA. Emerging principles for the therapeutic exploitation of glycosylation. Science. 2014;343(6166):1235681–87. doi:10.1126/science.1235681.
  • Varki A, Gagneux P. Multifarious roles of sialic acids in immunity. Ann N Y Acad Sci. 2012;1253(1):16–36. doi:10.1111/j.1749-6632.2012.06517.x.
  • Saphire EO, Parren PW, Pantophlet R, Zwick MB, Morris GM, Rudd PM, Dwek RA, Stanfield RL, Burton DR, Wilson IA. Crystal structure of a neutralizing human IGG against HIV-1: a template for vaccine design. Science. 2001;293(5532):1155–59. doi:10.1126/science.1061692.
  • Mimura Y, Katoh T, Saldova R, O’Flaherty R, Izumi T, Mimura-Kimura Y, Utsunomiya T, Mizukami Y, Yamamoto K, Matsumoto T. Glycosylation engineering of therapeutic IgG antibodies: challenges for the safety, functionality and efficacy. Protein Cell. 2018;9(1):47–62. doi:10.1007/s13238-017-0433-3.
  • van de Bovenkamp FS, Hafkenscheid L, Rispens T, Rombouts Y. The emerging importance of IgG Fab glycosylation in immunity. J Immunol. 2016;196(4):1435–41. doi:10.4049/jimmunol.1502136.
  • Lund J, Takahashi N, Pound JD, Goodall M, Jefferis R. Multiple interactions of IgG with its core oligosaccharide can modulate recognition by complement and human Fcy receptor I and influence the synthesis of its oligosaccharide chains. J Immunol. 1996;157:4963–69.
  • Wright A, Morrison SL. Effect of altered CH2-associated carbohydrate structure on the functional properties and in vivo fate of chimeric mouse-human immunoglobulin G1. J Exp Med. 1994;180(3):1087–96. doi:10.1084/jem.180.3.1087.
  • Pincetic A, Bournazos S, DiLillo DJ, Maamary J, Wang TT, Dahan R, Fiebiger B-M, Ravetch JV. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat Immunol. 2014;15(8):707–16. doi:10.1038/ni.2939.
  • Subedi GP, Hanson QM, Barb AW. Restricted motion of the Conserved Immunoglobulin G1 N-glycan is essential for efficient FcγRIIIa binding. Structure. 2014;22(10):1478–88. doi:10.1016/j.str.2014.08.002.
  • Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, Weikert SHA, Presta LG. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FcγRIII and antibody-dependent cellular toxicity. J Biol Chem. 2002;277(30):26733–40. doi:10.1074/jbc.M202069200.
  • Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem. 2003;278(5):3466–73. doi:10.1074/jbc.M210665200.
  • Kanda Y, Yamada T, Mori K, Okazaki A, Inoue M, Kitajima-Miyama K, Kuni-Kamochi R, Nakano R, Yano K, Kakita S. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology. 2007;17(1):104–18. doi:10.1093/glycob/cwl057.
  • Yu M, Brown D, Reed C, Chung S, Lutman J, Stefanich E, Wong A, Stephan JP, Bayer R. Production, characterization and pharmacokinetic properties of antibodies with N-linked mannose-5 glycans. MAbs. 2012;4(4):475–87. doi:10.4161/mabs.20737.
  • Goetze AM, Liu YD, Zhang Z, Shah B, Lee E, Bondarenko PV, Flynn GC. High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology. 2011;21(7):949–59. doi:10.1093/glycob/cwr027.
  • Debre M, Bonnet MC, Fridman WH, Carosella E, Philippe N, Reinert P, Vilmer E, Kaplan C, Teillaud JL, Griscelli C. Infusion of Fc gamma fragments for treatment of children with acute immune thrombocytopenic purpura. Lancet. 1993;342(8877):945–49. doi:10.1016/0140-6736(93)92000-J.
  • Liu L. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc-fusion proteins. J Pharm Sci. 2015;104(6):1866–84. doi:10.1002/jps.24444.
  • Zhang G, Massaad CA, Gao T, Pillai L, Bogdanova N, Ghauri S, Sheikh KA. Sialylated intravenous immunoglobulin suppress anti-ganglioside antibody mediated nerve injury. Exp Neurol. 2016;282:49–55. doi:10.1016/j.expneurol.2016.05.020.
  • Washburn N, Schwab I, Ortiz D, Bhatnagar N, Lansing JC, Medeiros A, Tyler S, Mekala D, Cochran E, Sarvaiya H. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity. Proc Natl Acad Sci U S A. 2015;112(11):E1297–306. doi:10.1073/pnas.1422481112.
  • Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science. 2008;320(5874):373–76. doi:10.1126/science.1154315.
  • Quast I, Keller CW, Maurer MA, Giddens JP, Tackenberg B, Wang L-X, Münz C, Nimmerjahn F, Dalakas MC, Lünemann JD. Sialylation of IgG Fc domain impairs complement-dependent cytotoxicity. J Clin Invest. 2015;125(11):4160–70. doi:10.1172/JCI82695.
  • Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. Annu Rev Biochem. 1982;51(1):531–54. doi:10.1146/annurev.bi.51.070182.002531.
  • Orange JS, Hossny EM, Weiler CR, Ballow M, Berger M, Bonilla FA, Buckley R, Chinen J, El-Gamal Y, Bd M. Use of intravenous immunoglobulin in human disease: a review of evidence by members of the primary immunodeficiency committee of the American academy of allergy, asthma and Immunology. J Allergy Clin Immunol. 2006;117:525–53.
  • Ballow M. The IgG molecule as a biological immune response modifier: mechanisms of action of intravenous immune serum globulin in autoimmune and inflammatory disorders. J Allergy Clin Immunol. 2011;127(2):315–23. doi:10.1016/j.jaci.2010.10.030.
  • Stephen-Victor E, Bayry J. Multimerized IgG1 Fc molecule as an anti-inflammatory agent. Nat Rev Rheumatol. 2018;14(7):390–92. doi:10.1038/s41584-018-0013-9.
  • Lünemann JD, Nimmerjahn F, Dalakas MC. Intravenous immunoglobulin in neurology--mode of action and clinical efficacy. Nat Rev Neurol. 2015;11(2):80–89. doi:10.1038/nrneurol.2014.253.
  • Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system?. Nat Rev Immunol. 2013;13(3):176–89. doi:10.1038/nri3401.
  • Shock A, Humphreys D, Nimmerjahn F. Dissecting the mechanism of action of intravenous immunoglobulin in human autoimmune disease: lessons from therapeutic modalities targeting Fcγ receptors. J Allergy Clin Immunol. 2020;146(3):492–500. doi:10.1016/j.jaci.2020.06.036.
  • Li D, Lou Y, Zhang Y, Liu S, Li J, Tao J. Sialylated immunoglobulin G: a promising diagnostic and therapeutic strategy for autoimmune diseases. Theranostics. 2021;11(11):5430–46. doi:10.7150/thno.53961.
  • Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, Rademacher TW, Mizuochi T, Taniguchi T, Matsuta K. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature. 1985;316(6027):452–57. doi:10.1038/316452a0.
  • Scherer HU, Van Der Woude D, Ioan-Facsinay A, El Bannoudi H, Trouw LA, Wang J, Häupl T, Burmester GR, Deelder AM, Huizinga TWJ. Glycan profiling of anti-citrullinated protein antibodies isolated from human serum and synovial fluid. Arthritis Rheum. 2010;62(6):1620–29. doi:10.1002/art.27414.
  • Van De Geijn FE, Wuhrer M, Selman MHJ, Willemsen SP, De Man YA, Deelder AM, Hazes JMW, Dolhain RJEM. Immunoglobulin G galactosylation and sialylation are associated with pregnancy-induced improvement of rheumatoid arthritis and the postpartum flare: results from a large prospective cohort study. Arthritis Res Ther. 2009;11(6):1–10. doi:10.1186/ar2892.
  • Espy C, Morelle W, Kavian N, Grange P, Goulvestre C, Viallon V, Chéreau C, Pagnoux C, Michalski JC, Guillevin L. Sialylation levels of anti-proteinase 3 antibodies are associated with the activity of granulomatosis with polyangiitis (wegener’s). Arthritis Rheum. 2011;63(7):2105–15. doi:10.1002/art.30362.
  • Fokkink W-JR, Selman MHJ, Dortland JR, Durmuş B, Kuitwaard K, Huizinga R, van Rijs W, Tio-Gillen AP, Van Doorn PA, Deelder AM. IgG Fc N-Glycosylation in guillain–barré syndrome treated with immunoglobulins. J Proteome Res. 2014;13(3):1722–30. doi:10.1021/pr401213z.
  • Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 2006;313(5787):670–73. doi:10.1126/science.1129594.
  • Schwab I, Biburger M, Krönke G, Schett G, Nimmerjahn F. IVIg-mediated amelioration of ITP in mice is dependent on sialic acid and SIGNR1. Eur J Immunol. 2012;42:826–30.
  • Schwab I, Mihai S, Seeling M, Kasperkiewicz M, Ludwig RJ, Nimmerjahn F. Broad requirement for terminal sialic acid residues and FcγRIIB for the preventive and therapeutic activity of intravenous immunoglobulins in vivo. Eur J Immunol. 2014;44(5):1444–53. doi:10.1002/eji.201344230.
  • Arroyo S, Tiessen RG, Denney WS, Jin J, Van Iersel MP (Thijs), Zeitz H, Am M, Mr S, JB B. Hyper-Sialylated IgG M254, an innovative therapeutic candidate, evaluated in healthy volunteers and in patients with immune thrombocytopenia purpura: safety, tolerability, pharmacokinetics, and pharmacodynamics. Blood. 2019;134(Supplement_1):1090. doi:10.1182/blood-2019-125993.
  • Dekkers G, Plomp R, Koeleman CAM, Visser R, von Horsten HH, Sandig V, Rispens T, Wuhrer M, Vidarsson G. Multi-level glyco-engineering techniques to generate IgG with defined Fc-glycans. Sci Rep. 2016;6(1):36964. doi:10.1038/srep36964.
  • Yu X, Baruah K, Harvey DJ, Vasiljevic S, Alonzi DS, Song BD, Higgins MK, Bowden TA, Scanlan CN, Crispin M. Engineering hydrophobic protein-carbohydrate interactions to fine-tune monoclonal antibodies. J Am Chem Soc. 2013;135(26):9723–32. doi:10.1021/ja4014375.
  • Cymer F, Beck H, Rohde A, Reusch D. Therapeutic monoclonal antibody N-glycosylation - structure, function and therapeutic potential. Biologicals. 2018;52:1–11. doi:10.1016/j.biologicals.2017.11.001.
  • Makita S, Tobinai K. Mogamulizumab for the treatment of T-cell lymphoma. Expert Opin Biol Ther. 2017;17(9):1145–53. doi:10.1080/14712598.2017.1347634.
  • Huang W, Giddens J, Fan SQ, Toonstra C, Wang LX. Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions. J Am Chem Soc. 2012;134(29):12308–18. doi:10.1021/ja3051266.
  • Yu X, Vasiljevic S, Mitchell DA, Crispin M, Scanlan CN. Dissecting the molecular mechanism of IVIg therapy: the interaction between serum IgG and DC-SIGN is independent of antibody glycoform or Fc domain. J Mol Biol. 2013;425(8):1253–58. doi:10.1016/j.jmb.2013.02.006.
  • Mahajan VS, Pillai S. Sialic acids and autoimmune disease. Immunol Rev. 2016;269(1):145–61. doi:10.1111/imr.12344.
  • Lübbers J, Rodríguez E, Van Kooyk Y. Modulation of immune tolerance via siglec-Sialic Acid interactions. Front Immunol. 2018;9:2807. doi:10.3389/fimmu.2018.02807.
  • Czajkowsky DM, Andersen JT, Fuchs A, Wilson TJ, Mekhaiel D, Colonna M, He J, Shao Z, Mitchell DA, Wu G. Developing the IVIG biomimetic, Hexa-Fc, for drug and vaccine applications. Sci Rep. 2015;5(1):9526. doi:10.1038/srep09526.
  • Crispin M, Yu X, Bowden TA. Crystal structure of sialylated IgG Fc: implications for the mechanism of intravenous immunoglobulin therapy. Proc Natl Acad Sci. 2013;110(38):3544–46. doi:10.1073/pnas.1310657110.
  • Tang F, Wang L-X HW. Chemoenzymatic synthesis of glycoengineered IgG antibodies and glycosite-specific antibody–drug conjugates. Nat Protoc. 2017;12(8):1702–21. doi:10.1038/nprot.2017.058.
  • Blundell PA, Le NPL, Allen J, Watanabe Y, Pleass RJ. Engineering the fragment crystallizable (Fc) region of human IgG1 multimers and monomers to fine-tune interactions with sialic acid-dependent receptors. J Biol Chem. 2017;292(31):12994–3007. doi:10.1074/jbc.M117.795047.
  • Blundell PA, Lu D, Dell A, Haslam S, Pleass RJ. Choice of host cell line is essential for the functional glycosylation of the Fc Region of human IgG1 inhibitors of influenza B viruses. J Immunol. 2020;204(4):1022–34. doi:10.4049/jimmunol.1901145.
  • Blundell PA, Lu D, Wilkinson M, Dell A, Haslam S, Pleass RJ. Insertion of N-terminal hinge glycosylation enhances interactions of the Fc Region of human IgG1 monomers with glycan-dependent receptors and blocks hemagglutination by the influenza virus. J Immunol. 2019;202:1595–611.
  • Mekhaiel DNA, Czajkowsky DM, Andersen JT, Shi J, El-Faham M, Doenhoff M, McIntosh RS, Sandlie I, He J, Hu J. Polymeric human Fc-fusion proteins with modified effector functions. Sci Rep. 2011;1:124. 10.1038/srep00124
  • Böhm M, Bohne-Lang A, Frank M, Loss A, Rojas-Macias MA, Lütteke T. Glycosciences.DB: an annotated data collection linking glycomics and proteomics data (2018 update). Nucleic Acids Res. 2019;47(D1):D1195–201. doi:10.1093/nar/gky994.
  • Baksmeier C, Blundell P, Steckel J, Schultz V, Gu Q, Da Silva Filipe A, Kohl A, Linnington C, Lu D, Dell A. Modified recombinant human IgG1-Fc is superior to natural IVIG at inhibiting immune-mediated demyelination. Immunology. 2021;00:1–16.
  • Tradtrantip L, Felix CM, Spirig R, Morelli AB, Verkman AS. Recombinant IgG1 Fc hexamers block cytotoxicity and pathological changes in experimental in vitro and rat models of neuromyelitis optica. Neuropharmacology. 2018;133:345–53. doi:10.1016/j.neuropharm.2018.02.002.
  • Spirig R, Campbell IK, Koernig S, Chen C-G, Lewis BJB, Butcher R, Muir I, Taylor S, Chia J, Leong D. rIgG1 Fc hexamer inhibits antibody-mediated autoimmune disease via effects on complement and FcγRs. J Immunol. 2018;200(8):2542–53. doi:10.4049/jimmunol.1701171.
  • Zuercher AW, Spirig R, Baz Morelli A, Rowe T, Käsermann F. Next-generation Fc receptor–targeting biologics for autoimmune diseases. Autoimmun Rev. 2019;18(10):102366. doi:10.1016/j.autrev.2019.102366.
  • Karsten CM, Pandey MK, Figge J, Kilchenstein R, Taylor PR, Rosas M, McDonald JU, Orr SJ, Berger M, Petzold D. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcγRIIB and dectin-1. Nat Med. 2012;18(9):1401–06. doi:10.1038/nm.2862.
  • Lux A, Yu X, Scanlan CN, Nimmerjahn F. Impact of immune complex size and glycosylation on IgG binding to human FcγRs. J Immunol. 2013;190(8):4315–23. doi:10.4049/jimmunol.1200501.
  • Campbell IK, Miescher S, Branch DR, Mott PJ, Lazarus AH, Han D, Maraskovsky E, Zuercher AW, Neschadim A, Leontyev D. Therapeutic effect of IVIG on inflammatory arthritis in mice is dependent on the Fc portion and independent of sialylation or basophils. J Immunol. 2014;192(11):5031–38. doi:10.4049/jimmunol.1301611.
  • JM F, Kr A, Rp B, Ha H, EE W, Wa B. Antibody blood-brain barrier efflux is modulated by glycan modification. Biochim Biophys Acta - Gen Subj. 2017;1861(9):2228–39. doi:10.1016/j.bbagen.2017.06.008.
  • Zhang G, Massaad CA, Gao T, Pillai L, Bogdanova N, Ghauri S, Sheikh KA. Sialylated intravenous immunoglobulin suppress anti-ganglioside antibody mediated nerve injury. Exp Neurol. 2016;282:49–55. doi:10.1017/j.expneurol.2016.05.020.
  • MacAuley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol. 2014;14(10):653–66. doi:10.1038/nri3737.
  • Movsisyan LD, Macauley MS. Structural advances of siglecs: insight into synthetic glycan ligands for immunomodulation. Org Biomol Chem. 2020;18(30):5784–97. doi:10.1039/D0OB01116A.
  • Crocker PR, Redelinghuys P. Siglecs as positive and negative regulators of the immune system. Biochem Soc Trans. 2008;36(6):1467–71. doi:10.1042/BST0361467.
  • Delaveris CS, Chiu SH, Riley NM, Bertozzi CR. Modulation of immune cell reactivity with cis-binding siglec agonists. Proc Natl Acad Sci U S A. 2021;118(3):e2012408118. doi: 10.1073/pnas.2012408118
  • Bondioli L, Ruozi B, Belletti D, Forni F, Vandelli MA, Tosi G. Sialic acid as a potential approach for the protection and targeting of nanocarriers. Expert Opin Drug Deliv. 2011;8(7):921–37. doi:10.1517/17425247.2011.577061.
  • Courtney AH, Puffer EB, Pontrello JK, Yang ZQ, Kiessling LL. Sialylated multivalent antigens engage CD22 in trans and inhibit B cell activation. Proc Natl Acad Sci U S A. 2009;(8). doi:10.1073/pnas.0807207106.
  • Rillahan CD, Schwartz E, McBride R, Fokin VV, Paulson JC. Click and pick: identification of sialoside analogues for siglec-based cell targeting. Angew Chemie. 2012;51(44):11014–18. doi:10.1002/anie.201205831.
  • Flynn RA, Pedram K, Malaker SA, Batista PJ, Smith BAH, Johnson AG, George BM, Majzoub K, Villalta PW, Carette JE. Small RNAs are modified with N-glycans and displayed on the surface of living cells. Cell. 2021;(12). doi:10.1016/j.cell.2021.04.023.
  • Spence S, Greene MK, Fay F, Hams E, Saunders SP, Hamid U, Fitzgerald M, Beck J, Bains BK, Smyth P. Targeting siglecs with a sialic acid-decorated nanoparticle abrogates inflammation. Sci Transl Med. 2015;7(303):1–13. doi:10.1126/scitranslmed.aab3459.
  • Kilcoyne M, Joshi L. Translational Glycobiology in Human Health and Disease. Academic Press,London; 2020. ISBN 9780128196557.
  • Miles LA, Hermans SJ, Crespi GAN, Gooi JH, Doughty L, Nero TL, Markulić J, Ebneth A, Wroblowski B, Oehlrich D. Small molecule binding to alzheimer risk factor CD33 promotes Aβ phagocytosis. iScience. 2019;19:110–18. doi:10.1016/j.isci.2019.07.023.
  • Lajaunias F, Dayer JM, Chizzolini C. Constitutive repressor activity of CD33 on human monocytes requires sialic acid recognition and phosphoinositide 3-kinase-mediated intracellular signaling. Eur J Immunol. 2005;35(1):243–51. doi:10.1002/eji.200425273.
  • Waldmann M, Jirmann R, Hoelscher K, Wienke M, Niemeyer FC, Rehders D, Meyer B. A nanomolar multivalent ligand as entry inhibitor of the hemagglutinin of avian influenza. J Am Chem Soc. 2014;136(2):783–88. doi:10.1021/ja410918a.
  • Cartellieri M, Feldmann A, Koristka S, Arndt C, Loff S, Ehninger A, von Bonin M, Bejestani EP, Ehninger G, Bachmann MP. Switching CAR T cells on and off: a novel modular platform for retargeting of T cells to AML blasts. Blood Cancer J. 2016;6(8):e458. doi:10.1038/bcj.2016.61.
  • Estus S, Bc S, Devanney N, Katsumata Y, EE P, DW F. Evaluation of CD33 as a genetic risk factor for alzheimer’s disease. Acta Neuropathol. 2019;138:187–99.
  • Murch SH. Common determinants of severe covid-19 infection are explicable by SARS-CoV-2 secreted glycoprotein interaction with the CD33-related siglecs, siglec-3 and siglec-5/14. Med Hypotheses. 2020;144:110168. doi:10.1016/j.mehy.2020.110168.
  • Rodrigues E, Jung J, Park H, Loo C, Soukhtehzari S, Kitova EN, Mozaneh F, Daskhan G, Schmidt EN, Aghanya V. A versatile soluble siglec scaffold for sensitive and quantitative detection of glycan ligands. Nat Commun. 2020;11(1):5091. doi:10.1038/s41467-020-18907-6.
  • Blundell P, Pleass R. A method to detect the binding of hyper-glycosylated fragment crystallizable (Fc) region of human IgG1 to glycan receptors. Methods Mol Biol. 2019;1904:417–21.
  • Matrosovich M, Herrler G, Klenk HD. Sialic acid receptors of viruses. SialoGlyco Chem Biol II. 2015;367:1–28.
  • Stencel-Baerenwald JE, Reiss K, Reiter DM, Stehle T, Dermody TS. The sweet spot: defining virus-sialic acid interactions. Nat Rev Microbiol. 2014;12(11):739–49. doi:10.1038/nrmicro3346.
  • Vahey MD, Fletcher DA. Influenza A virus surface proteins are organized to help penetrate host mucus. Elife. 2019;8:e43764. doi:10.7554/eLife.43764.
  • Jj S, Dc W. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 2000;69(1):531–69. doi:10.1146/annurev.biochem.69.1.531.
  • Bandlow V, Lauster D, Ludwig K, Hilsch M, Reiter-Scherer V, Rabe JP, Böttcher C, Herrmann A, Seitz O. Sialyl-LacNAc-PNA⋅DNA concatamers by rolling-circle amplification as multivalent inhibitors of influenza A virus particles. ChemBioChem. 2019;20:1–8.
  • Bandlow V, Liese S, Lauster D, Ludwig K, Netz RR, Herrmann A, Seitz O. Spatial screening of hemagglutinin on influenza A virus particles: sialyl-LacNAc displays on DNA and PEG scaffolds reveal the requirements for bivalency enhanced interactions with weak monovalent binders. J Am Chem Soc. 2017;139(45):16389–97. doi:10.1021/jacs.7b09967.
  • Tang S, Puryear WB, Seifried BM, Dong X, Runstadler JA, Ribbeck K, Olsen BD. Antiviral agents from multivalent presentation of sialyl oligosaccharides on brush polymers. ACS Macro Lett. 2016;5(3):413–18. doi:10.1021/acsmacrolett.5b00917.
  • Kwon S-J, Na DH, Kwak JH, Douaisi M, Zhang F, Park EJ, Park J-H, Youn H, Song C-S, Kane RS. Nanostructured glycan architecture is important in the inhibition of influenza A virus infection. Nat Nanotechnol. 2017;12(1):48–54. doi:10.1038/nnano.2016.181.
  • Papp I, Sieben C, Sisson AL, Kostka J, Böttcher C, Ludwig K, Herrmann A, Haag R. Inhibition of influenza virus activity by multivalent glycoarchitectures with matched sizes. ChemBioChem. 2011;12(6):887–95. doi:10.1002/cbic.201000776.
  • Sigal GB, Mammen M, Dahmann G, Whitesides GM. Polyacrylamides bearing pendant α-sialoside groups strongly inhibit agglutination of erythrocytes by influenza virus: the strong inhibition reflects enhanced binding through cooperative polyvalent interactions. J Am Chem Soc. 1996;118(16):3789–800. doi:10.1021/ja953729u.
  • Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol. 2005;23(11):1418–23. doi:10.1038/nbt1159.
  • Delaveris CS, Webster ER, Banik SM, Boxer SG, Bertozzi CR. Membrane-tethered mucin-like polypeptides sterically inhibit binding and slow fusion kinetics of influenza A virus. Proc Natl Acad Sci U S A. 2020;117(23):12643–50. doi:10.1073/pnas.1921962117.
  • Ghosh S. Nanotechnology and sialic acid biology. Academic Press, London; 2020. ISBN 9780128161265.
  • Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–27. doi:10.1126/science.1114397.
  • Rathor S, Bhatt DC, Aamir S, Singh SK, Kumar V. A comprehensive review on role of nanoparticles in therapeutic delivery of medicine. Pharm Nanotechnol. 2017;5:263–75.
  • Xu R, Ekiert DC, Krause JC, Hai R, Crowe JE, Wilson IA. Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus. Science. 2010;328(5976):357–60. doi:10.1126/science.1186430.
  • Wang Q, Cheng F, Lu M, Tian X, Ma J. Crystal structure of unliganded influenza B virus hemagglutinin. J Virol. 2008;82(6):3011–20. doi:10.1128/JVI.02477-07.
  • Ahmed AA, Giddens J, Pincetic A, Lomino JV, Ravetch JV, Wang LX, Bjorkman PJ. Structural characterization of anti-inflammatory immunoglobulin G Fc proteins. J Mol Biol. 2014;426(18):3166–79. doi:10.1016/j.jmb.2014.07.006.
  • Liu Q, Zhou YH, Yang ZQ. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol. 2016;13(1):3–10. doi:10.1038/cmi.2015.74.
  • Maurer MA, Meyer L, Bianchi M, Turner HL, Le NPL, Steck M, Wyrzucki A, Orlowski V, Ward AB, Crispin M. Glycosylation of human IgA directly inhibits influenza A and other Sialic-Acid-binding viruses. Cell Rep. 2018;23(1):90–99. doi:10.1016/j.celrep.2018.03.027.
  • Sandin S, Öfverstedt LG, Wikström AC, Ö W, Skoglund U. Structure and flexibility of individual immunoglobulin G molecules in solution. Structure. 2004;12(3):409–15. doi:10.1016/j.str.2004.02.011.
  • Weis W, Jh B, Cusack S, JC P, Jj S, Dc W. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature. 1988;333(6172):426–31. doi:10.1038/333426a0.
  • Hong M, Lee PS, Hoffman RMB, Zhu X, Krause JC, Laursen NS, Yoon S-I, Song L, Tussey L, JE C. Antibody recognition of the pandemic H1N1 influenza virus hemagglutinin receptor binding site. J Virol. 2013;87(22):12471–80. doi:10.1128/JVI.01388-13.
  • Suzuki Y, Nei M. Origin and evolution of influenza virus hemagglutinin genes. Mol Biol Evol. 2002;19(4):501–09. doi:10.1093/oxfordjournals.molbev.a004105.
  • Ernst B, Magnani JL. From carbohydrate leads to glycomimetic drugs. Nat Rev Drug Discov. 2009;8(8):661–77. doi:10.1038/nrd2852.
  • Gao Z, Niikura M, Withers SG. Ultrasensitive fluorogenic reagents for neuraminidase titration. Angew Chemie - Int Ed. 2017;56(22):6112–16. doi:10.1002/anie.201610544.
  • Roy MG, Livraghi-Butrico A, Fletcher AA, McElwee MM, Evans SE, Boerner RM, Alexander SN, Bellinghausen LK, Song AS, Petrova YM. Muc5b is required for airway defence. Nature. 2014;505(7483):412–16. doi:10.1038/nature12807.
  • Zanin M, Baviskar P, Webster R, Webby R. The interaction between respiratory pathogens and mucus. Cell Host Microbe. 2016;19(2):159–68. doi:10.1016/j.chom.2016.01.001.
  • Bansil R, Turner BS. The biology of mucus: composition, synthesis and organization. Adv Drug Deliv Rev. 2018;124:3–15. doi:10.1016/j.addr.2017.09.023.
  • Alejandra Tortorici M, Walls AC, Lang Y, Wang C, Li Z, Koerhuis D, Boons GJ, Bosch BJ, Rey FA, de Groot RJ. Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol. 2019;26(6):481–89. doi:10.1038/s41594-019-0233-y.
  • Chambers BS, Li Y, Hodinka RL, Hensley SE. Recent H3N2 influenza virus clinical isolates rapidly acquire hemagglutinin or neuraminidase mutations when propagated for antigenic analyses. J Virol. 2014;88(18):10986–89. doi:10.1128/JVI.01077-14.
  • Peng W, De Vries RP, Grant OC, Thompson AJ, McBride R, Tsogtbaatar B, Lee PS, Razi N, Wilson IA, Woods RJ. Recent H3N2 viruses have evolved specificity for extended, branched human-type receptors, conferring potential for increased avidity. Cell Host Microbe. 2017;21(1):23–34. doi:10.1016/j.chom.2016.11.004.
  • Broszeit F, van Beek RJ, Unione L, Bestebroer TM, Chapla D, Yang JY, Moremen KW, Herfst S, Fouchier RAM, De Vries RP. Glycan remodeled erythrocytes facilitate antigenic characterization of recent A/H3N2 influenza viruses. bioRxiv. 2020. doi.10.1101/2020.12.18.423398
  • Trichonas G, Kaiser PK. Aflibercept for the treatment of age-related macular degeneration. Ophthalmol Ther. 2013;2(2):89–98. doi:10.1007/s40123-013-0015-2.
  • Faghihi H, Najafabadi AR, Daman Z, Ghasemian E, Montazeri H, Vatanara A. Respiratory administration of infliximab dry powder for local suppression of inflammation. AAPS PharmSciTech. 2019;20(3):128. doi:10.1208/s12249-019-1308-0.