7,350
Views
6
CrossRef citations to date
0
Altmetric
Review

Allometric scaling of therapeutic monoclonal antibodies in preclinical and clinical settings

ORCID Icon, &
Article: 1964935 | Received 04 Jun 2021, Accepted 03 Aug 2021, Published online: 16 Sep 2021

References

  • Xu Z, Davis HM, Zhou H. Rational development and utilization of antibody-based therapeutic proteins in pediatrics. Pharmacol Therapeut. 2013;137(2):225–22. doi:10.1016/j.pharmthera.2012.10.005. PMID: 23092685.
  • Kaplon H, Muralidharan M, Schneider Z, Reichert JM. Antibodies to watch in 2020. Mabs. 2019;12:1703531. doi:10.1080/19420862.2019.1703531. PMID: 31847708.
  • U. S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER). General clinical pharmacology considerations for pediatric studies for drugs and biological products. Guidance for Industry, 2014. [ accessed 02 June 2021]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/general-clinical-pharmacology-considerations-pediatric-studies-drugs-and-biological-products
  • EMA Committee for Medicinal Products for Human Use (CHMP). Guideline on the role of pharmacokinetics in the development of medicinal products in the paediatric population. 2006. [ accessed 02 June 2021]. Available from: https://www.ema.europa.eu/documents/scientific-guideline/guideline-role-pharmacokinetics-development-medicinal-products-paediatric-population_en.pdf
  • U. S. Food and Drug Administration, Department of Health and Human Services. Best Pharmaceuticals for Children Act and Pediatric Research Equity Act. Status Report to Congress, 2016. [ accessed 30 Apr 2021]. Available from: https://www.fda.gov/science-research/pediatrics/best-pharmaceuticals-children-act-and-pediatric-research-equity-act
  • Malik P, Edginton A. Pediatric physiology in relation to the pharmacokinetics of monoclonal antibodies. Expert Opin Drug Met. 2018;14(6):585–99. doi:10.1080/17425255.2018.1482278. PMID: 29806953.
  • Germovsek E, Barker CIS, Sharland M, Standing JF. Pharmacokinetic–pharmacodynamic modeling in pediatric drug development, and the importance of standardized scaling of clearance. Clin Pharmacokinet. 2019;58(1):39–52. doi:10.1007/s40262-018-0659-0. PMID: 29675639.
  • Xu Y, Langevin BA, Zhou H, Xu Z. Model‐aided adults‐to‐children pharmacokinetic extrapolation and empirical body size‐based dosing exploration for therapeutic monoclonal antibodies—is allometry a reasonable choice?. J Clin Pharmacol. 2020;60:1573–84. doi:10.1002/jcph.1677. PMID: 32578225.
  • Edlund H, Melin J, Parra-Guillen ZP, Kloft C. Pharmacokinetics and pharmacokinetic–pharmacodynamic relationships of monoclonal antibodies in children. Clin Pharmacokinet. 2015;54(1):35–80. doi:10.1007/s40262-014-0208-4. PMID: 25516414.
  • Pan X, Stader F, Abduljalil K, Gill KL, Johnson TN, Gardner I, Jamei M. Development and application of a physiologically-based pharmacokinetic model to predict the pharmacokinetics of therapeutic Proteins from full-term neonates to adolescents. Aaps J. 2020;22:76. doi:10.1208/s12248-020-00460-1. PMID: 32449129.
  • Zhao J, Cao Y, Jusko WJ. Across-species scaling of monoclonal antibody pharmacokinetics using a minimal PBPK model. Pharm Res. 2015;32(10):3269–81. doi:10.1007/s11095-015-1703-5. PMID: 25939552.
  • Holford N, Heo YA, Anderson B. A pharmacokinetic standard for babies and adults. J Pharm Sci. 2013;102:2941–52. doi:10.1002/jps.23574. PMID: 23650116.
  • Mahmood I. Interspecies scaling: predicting clearance of anticancer drugs in humans. A comparative study of three different approaches using body weight or body surface area. Eur J Drug Metab Pharmacokinet. 1996;21(3):275–78. doi:10.1007/BF03189726. PMID: 8980928.
  • Wang J, Iyer S, Fielder PJ, Davis JD, Deng R. Projecting human pharmacokinetics of monoclonal antibodies from nonclinical data: comparative evaluation of prediction approaches in early drug development. Biopharm Drug Dispos. 2016;37:51–65. doi:10.1002/bdd.1952. PMID: 25869767.
  • Liu XI, Dallmann A, Wang YM, Green DJ, Burnham JM, Chiang B, Wu P, Sheng M, Lu K, Anker JN. Monoclonal antibodies and fc‐fusion Proteins for pediatric use: dosing, immunogenicity, and modeling and simulation in data submitted to the US food and drug administration. J Clin Pharmacol. 2019;59:1130–43. doi:10.1002/jcph.1406. PMID: 30865317.
  • Mordenti J, Chen SA, Moore JA, Ferraiolo BL, Green JD. Interspecies scaling of clearance and volume of distribution data for five therapeutic Proteins. Pharm Res. 1991;8(11):1351–59. doi:10.1023/a:1015836720294. PMID: 1798669.
  • Deng R, Iyer S, Theil F-P, Mortensen DL, Fielder PJ, Prabhu S. Projecting human pharmacokinetics of therapeutic antibodies from nonclinical data. Mabs. 2011;3(1):61–66. doi:10.4161/mabs.3.1.13799. PMID: 20962582.
  • Wang W, Prueksaritanont T. Prediction of human clearance of therapeutic proteins: simple allometric scaling method revisited. Biopharm Drug Dispos. 2010;31:253–63. doi:10.1002/bdd.708. PMID - 20437464.
  • Oitate M, Masubuchi N, Ito T, Yabe Y, Karibe T, Aoki T, Murayama N, Kurihara A, Okudaira N, Izumi T. Prediction of human pharmacokinetics of therapeutic monoclonal antibodies from simple allometry of monkey data. Drug Metab Pharmacokinet. 2011;26(4):423–30. doi:10.2133/dmpk.dmpk-11-rg-011. PMID: 21606605.
  • Wu Q, Peters SA. A retrospective evaluation of allometry, population pharmacokinetics, and physiologically‐based pharmacokinetics for pediatric dosing using clearance as a surrogate. Cpt Pharmacometrics Syst Pharmacol. 2019;8:220–29. doi:10.1002/psp4.12385. PMID: 30762304.
  • European Medicines Agency. ICH topic E 11 clinical investigation of medicinal products in the paediatric population. 2001. [ accessed 02 June 2021]. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-1.pdf
  • Roopenian DC, Akilesh S. FcRn: the neonatal fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715–25. doi:10.1038/nri2155. PMID: 17703228.
  • Freysdottir J. Production of monoclonal antibodies. Methods in Molecular Biology. 2000:267–79. doi:10.1385/1-59259-076-4:267. PMID: 21337095.
  • Lu R-M, Hwang Y-C, Liu IJ, Lee -C-C, Tsai H-Z, Li H-J, Wu H-C. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27:1. doi:10.1186/s12929-019-0592-z. PMID: 31894001.
  • Kildegaard HF, Baycin-Hizal D, Lewis NE, Betenbaugh MJ. The emerging CHO systems biology era: harnessing the ‘omics revolution for biotechnology. Curr Opin Biotech. 2013;24(6):1102–07. doi:10.1016/j.copbio.2013.02.007. PMID: 23523260.
  • Sedykh SE, Prinz VV, Buneva VN, Nevinsky GA. Bispecific antibodies: design, therapy, perspectives. Drug Des Dev Ther. 2018;12:195–208. doi:10.2147/dddt.s151282. PMID: 29403265.
  • Joubert N, Beck A, Dumontet C, Denevault-Sabourin C. Antibody–drug conjugates: the last decade. Pharm. 2020;13:245. doi:10.3390/ph13090245. PMID: 32937862.
  • Bayne MC, Illidge TM. Antibody therapy of lymphoma. Expert Opin Pharmaco. 2005;2:953–61. doi:10.1517/14656566.2.6.953. PMID: 11585011.
  • Paci A, Desnoyer A, Delahousse J, Blondel L, Maritaz C, Chaput N, Mir O, Broutin S. Pharmacokinetic/pharmacodynamic relationship of therapeutic monoclonal antibodies used in oncology: part 1, monoclonal antibodies, antibody-drug conjugates and bispecific T-cell engagers. Eur J Cancer. 2020;128:107–18. doi:10.1016/j.ejca.2020.01.005. PMID: 32037061.
  • Bittner B, Richter W, Schmidt J. Subcutaneous administration of biotherapeutics: an overview of current challenges and opportunities. Biodrugs. 2018;32(5):425–40. doi:10.1007/s40259-018-0295-0. PMID: 30043229.
  • Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci. 2004;93(11):2645–68. doi:10.1002/jps.20178. PMID: 15389672.
  • Mould DR, Green B. Pharmacokinetics and pharmacodynamics of monoclonal antibodies. Biodrugs. 2010;24(1):23–39. doi:10.2165/11530560-000000000-00000. PMID: 20055530.
  • Temrikar ZH, Suryawanshi S, Meibohm B. Pharmacokinetics and clinical pharmacology of monoclonal antibodies in pediatric patients. Pediatr Drugs. 2020;22(2):199–216. doi:10.1007/s40272-020-00382-7. PMID: 32052309.
  • Keizer RJ, Huitema ADR, Schellens JHM, Beijnen JH. Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(8):493–507. doi:10.2165/11531280-000000000-00000. PMID: 20608753.
  • Liu L. Pharmacokinetics of monoclonal antibodies and fc-fusion proteins. Protein Cell. 2018;9(1):15–32. doi:10.1007/s13238-017-0408-4. PMID: 28421387.
  • Kuo TT, Aveson VG. Neonatal fc receptor and IgG-based therapeutics. Mabs. 2011;3:422–30. doi:10.4161/mabs.3.5.16983. PMID: 22048693.
  • Sharma V, McNeill JH. To scale or not to scale: the principles of dose extrapolation. Brit J Pharmacol. 2009;157(6):907–21. doi:10.1111/j.1476-5381.2009.00267.x. PMID: 19508398.
  • Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. Cpt Pharmacometrics Syst Pharmacol. 2017;6:576–88. doi:10.1002/psp4.12224. PMID: 28653357.
  • U. S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Drug-drug interaction assessment for therapeutic Proteins guidance for industry. 2020. [ accessed 22 April 2021]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/drug-drug-interaction-assessment-therapeutic-proteins-guidance-industry
  • Li Z, Krippendorff B-F, Shah DK. Influence of molecular size on the clearance of antibody fragments. Pharm Res. 2017;34(10):2131–41. doi:10.1007/s11095-017-2219-y. PMID: 28681164.
  • Huh Y, Smith DE, Feng MR. Interspecies scaling and prediction of human clearance: comparison of small- and macro-molecule drugs. Xenobiotica. 2011;41(11):972–87. doi:10.3109/00498254.2011.598582. PMID: 21892879.
  • Deehan M, Garcês S, Kramer D, Baker MP, Rat D, Roettger Y, Kromminga A. Managing unwanted immunogenicity of biologicals. Autoimmun Rev. 2015;14(7):569–74. doi:10.1016/j.autrev.2015.02.007. PMID: 25742758.
  • Swanson SJ, Bussiere J. Immunogenicity assessment in non-clinical studies. Curr Opin Microbiol. 2012;15(3):337–47. doi:10.1016/j.mib.2012.05.015. PMID: 22770538.
  • Gress K, Bass JA, Funk RS, Morrow RP, Hasenkamp R, Shakhnovich V. Facing real-world challenges of immunogenicity in pediatric inflammatory bowel disease. Front Immunol. 2020;11:1148. doi:10.3389/fimmu.2020.01148. PMID: 32582213.
  • Strand V, Balsa A, Al-Saleh J, Barile-Fabris L, Horiuchi T, Takeuchi T, Lula S, Hawes C, Kola B, Marshall L. Immunogenicity of biologics in chronic inflammatory diseases: a systematic review. Biodrugs. 2017;31(4):299–316. doi:10.1007/s40259-017-0231-8. PMID: 28612180.
  • Uchida N, Sambe T, Yoneyama K, Fukazawa N, Kawanishi T, Kobayashi S, Shima M. A first-in-human phase 1 study of ACE910, a novel factor VIII-mimetic bispecific antibody, in healthy subjects. Blood. 2016;127:1633–41. doi:10.1182/blood-2015-06-650226. PMID: 26626991.
  • Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(10):633–59. doi:10.2165/11535960-000000000-00000. PMID: 20818831.
  • Jang GR, Harris RZ, Lau DT. Pharmacokinetics and its role in small molecule drug discovery research. Medical Care Research and Review. 2001;5:382–96. doi:10.1002/med.1015. PMID: 11579439.
  • Ferri N, Bellosta S, Baldessin L, Boccia D, Racagni G, Corsini A. Pharmacokinetics interactions of monoclonal antibodies. Pharmacol Res. 2016;111:592–99. doi:10.1016/j.phrs.2016.07.015. PMID: 27438459.
  • Deng R, Jin F, Prabhu S, Iyer S. Monoclonal antibodies: what are the pharmacokinetic and pharmacodynamic considerations for drug development?. Expert Opin Drug Met. 2012;8(2):141–60. doi:10.1517/17425255.2012.643868. PMID: 22248267.
  • Dong JQ, Salinger DH, Endres CJ, Gibbs JP, Hsu C-P, Stouch BJ, Hurh E, Gibbs M. Quantitative prediction of human pharmacokinetics for monoclonal antibodies. Clin Pharmacokinet. 2011;50(2):131–42. doi:10.2165/11537430-000000000-00000. PMID: 21241072.
  • Avery LB, Wang M, Kavosi MS, Joyce A, Kurz JC, Fan -Y-Y, Dowty ME, Zhang M, Zhang Y, Cheng A. Utility of a human FcRn transgenic mouse model in drug discovery for early assessment and prediction of human pharmacokinetics of monoclonal antibodies. Mabs. 2016;8(6):1–15. doi:10.1080/19420862.2016.1193660. PMID: 27232760.
  • Ling J, Zhou H, Jiao Q, Davis HM. Interspecies scaling of therapeutic monoclonal antibodies: initial look. J Clin Pharmacol. 2009;49(12):1382–402. doi:10.1177/0091270009337134. PMID: 19837907.
  • Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;7:1093–95. doi:10.1023/a:1018943613122. PMID: 8378254.
  • Boxenbaum H, Fertig JB. Scaling of antipyrine intrinsic clearance of unbound drug in 15 mammalian species. Eur J Drug Metab Ph. 1984;9:177–83. doi:10.1007/bf03189622. PMID: 6745307.
  • Sacher GA.Relationship of lifespan to brain weight and body weight in mammals. In: Wolstenholme GEW, O’Connor M, editors. Ciba Foundation Colloquia on Ageing. Vol. 5. The Lifespan of Animals. Boston, London, UK: Little Brown and Co; 1959. p. 115–41. doi: 10.1002/9780470715253.ch9.
  • Yang N, Xu MC, Yao Z. Evaluation of weight thresholds for pediatric patients to use adult dosage of therapeutic monoclonal antibodies. J Clin Pharmacol. 2019;59:1309–18. doi:10.1002/jcph.1434. PMID: 31050000.
  • Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology - drug disposition, action, and therapy in infants and children. N Engl J Med. 2003:1157–67. doi:10.1056/NEJMra035092. PMID: 13679531.
  • Robbie GJ, Zhao L, Mondick J, Losonsky G, Roskos LK. Population pharmacokinetics of palivizumab, a humanized anti-respiratory syncytial virus monoclonal antibody, in adults and children. Antimicrob Agents Chemother. 2012;56(9):4927–36. doi:10.1128/aac.06446-11. PMID: 22802243.
  • Ternant D, Paintaud G, Trachtman H, Gipson DS, Joy MS. A possible influence of age on absorption and elimination of adalimumab in focal segmental glomerulosclerosis (FSGS). Eur J Clin Pharmacol. 2016;72:253–55. doi:10.1007/s00228-015-1973-1. PMID: 26521258.
  • Mahmood I. Interspecies scaling of protein drugs: prediction of clearance from animals to humans. J Pharm Sci. 2004;93(1):177–85. doi:10.1002/jps.10531. PMID: 14648647.
  • Mahmood I. Pharmacokinetic allometric scaling of antibodies: application to the first‐in‐human dose estimation. J Pharm Sci. 2009;98:3850–61. doi:10.1002/jps.21682. PMID: 19177515.
  • Wang L, Qiang W, Cheng Z. Allometric scaling of therapeutic monoclonal antibodies using antigen concentration as a correction factor: application to the human clearance prediction. J Pharm Sci. 2016;105(3):1335–40. doi:10.1016/j.xphs.2015.12.021. PMID: 26886347.
  • Deng Y, Hu L, Qiang W, Cheng Z, Wang L, Wang X. TNF‐α level affects etanercept clearance: TNF‐α concentration as a new correction factor of allometric scaling to predict individual etanercept clearances in patients with ankylosing spondylitis. Clin Exp Pharmacol P. 2018;45:643–51. doi:10.1111/1440-1681.12924. PMID: 29436715.
  • Xiang H, Bender BC, Reyes AE, Merchant M, Jumbe NLS, Romero M, Davancaze T, Nijem I, Mai E, Young J. Onartuzumab (MetMAb): using nonclinical pharmacokinetic and concentration–effect data to support clinical development. Clin Cancer Res. 2013;19:5068–78. doi:10.1158/1078-0432.ccr-13-0260. PMID: 23894056.
  • Giragossian C, Vage C, Li J, Pelletier K, Piché-Nicholas N, Rajadhyaksha M, Liras J, Logan A, Calle RA, Weng Y. Mechanistic investigation of the preclinical pharmacokinetics and interspecies scaling of PF-05231023, a fibroblast growth factor 21–antibody Protein conjugate. Drug Metab Dispos. 2015;43(6):803–11. doi:10.1124/dmd.114.061713. PMID: 25805881.
  • Betts A, Keunecke A, TJv S, PHvd G, Avery LB, Jones H, Berkhout J. Linear pharmacokinetic parameters for monoclonal antibodies are similar within a species and across different pharmacological targets: a comparison between human, cynomolgus monkey and hFcRn Tg32 transgenic mouse using a population-modeling approach. Mabs. 2018;10:1–55. doi:10.1080/19420862.2018.1462429. PMID: 29634430.
  • Haraya K, Tachibana T, Nezu J. Quantitative prediction of therapeutic antibody pharmacokinetics after intravenous and subcutaneous injection in human. Drug Metab Pharmacokinet. 2017;32(4):208–17. doi:10.1016/j.dmpk.2017.05.002. PMID: 28734646.
  • Luu KT, Bergqvist S, Chen E, Hu-Lowe D, Kraynov E. A model-based approach to predicting the human pharmacokinetics of a monoclonal antibody exhibiting target-mediated drug disposition. J Pharmacol Exp Ther. 2012;341(3):702–08. doi:10.1124/jpet.112.191999. PMID: 22414855.
  • Schultink AHMdV, Doornbos RP, Bakker ABH, Bol K, Throsby M, Geuijen C, Maussang D, Schellens JHM, Beijnen JH, Huitema ADR. Translational PK-PD modeling analysis of MCLA-128, a HER2/HER3 bispecific monoclonal antibody, to predict clinical efficacious exposure and dose. Invest New Drug. 2018;36:1006–15. doi:10.1007/s10637-018-0593-x. PMID: 29728897.
  • Singh AP, Krzyzanski W, Martin SW, Weber G, Betts A, Ahmad A, Abraham A, Zutshi A, Lin J, Singh P. Quantitative prediction of human pharmacokinetics for mAbs exhibiting target-mediated disposition. Aaps J. 2015;17:389–99. doi:10.1208/s12248-014-9690-8. PMID: 25445845.
  • Kagan L, Abraham AK, Harrold JM, Mager DE. Interspecies scaling of receptor-mediated pharmacokinetics and pharmacodynamics of type I interferons. Pharm Res. 2010;27(5):920–32. doi:10.1007/s11095-010-0098-6. PMID: 20232116.
  • Han K, Peyret T, Quartino A, Gosselin NH, Gururangan S, Casanova M, Merks JHM, Massimino M, Grill J, Daw NC. Bevacizumab dosing strategy in paediatric cancer patients based on population pharmacokinetic analysis with external validation. Brit J Clin Pharmaco. 2016;81:148–60. doi:10.1111/bcp.12778. PMID: 26345283.
  • Standing JF. Understanding and applying pharmacometric modelling and simulation in clinical practice and research. Brit J Clin Pharmaco. 2017;83:247–54. doi:10.1111/bcp.13119. PMID: 27567102.
  • Zhang Y, Wei X, Bajaj G, Barrett JS, Meibohm B, Joshi A, Gupta M. Challenges and considerations for development of therapeutic proteins in pediatric patients. J Clin Pharmacol. 2015;55(S3):S103–S115. doi:10.1002/jcph.382. PMID: 25707958.
  • Bhattacharya I, Manukyan Z, Chan P, Heatherington A, Harnisch L. Application of quantitative pharmacology approaches in bridging pharmacokinetics and pharmacodynamics of domagrozumab from adult healthy subjects to pediatric patients with duchenne muscular disease. J Clin Pharmacol. 2018;58(3):314–26. doi:10.1002/jcph.1015. PMID: 29023829.
  • Bai S, Jorga K, Xin Y, Jin D, Zheng Y, Damico-Beyer LA, Gupta M, Tang M, Allison DE, Lu D. A guide to rational dosing of monoclonal antibodies. Clin Pharmacokinet. 2012;51(2):119–35. doi:10.2165/11596370-000000000-00000. PMID: 22257150.
  • Kleiber M. Body size and metabolism. Hilgardia. 1932;6(11):315–53. doi:10.3733/hilg.v06n11p315.
  • Tang H, Mayersohn M. A global examination of allometric scaling for predicting human drug clearance and the prediction of large vertical allometry. J Pharm Sci. 2006;95:1783–99. doi:10.1002/jps.20481. PMID: 16795013.
  • Tang H, Mayersohn M. A mathematical description of the functionality of correction factors used in allometry for predicting human drug clearance. Drug Metab Dispos. 2005;33:1294–96. doi:10.1124/dmd.105.004135. PMID: 15919851.
  • Lee WS, Shim SR, Lee SY, Yoo JS, Cho SK. Preclinical pharmacokinetics, interspecies scaling, and pharmacokinetics of a phase I clinical trial of TTAC-0001, a fully human monoclonal antibody against vascular endothelial growth factor 2. Drug Des Dev Ther. 2018;12:495–504. doi:10.2147/dddt.s150241. PMID: 29563774.
  • Diao L, Meibohm B. Tools for predicting the PK/PD of therapeutic proteins. Expert Opin Drug Met. 2015;11:1115–25. doi:10.1517/17425255.2015.1041917. PMID: 25936400.
  • Dedrick RL, Bischoff KB, Zaharko DS. Interspecies correlation of plasma concentration history of methotrexate (NSC-740). Cancer Chemother Rep 1970;54:95–101. PMID: 5003581.
  • Boxenbaum H, Ronfeld R. Interspecies pharmacokinetic scaling and the dedrick plots. Am J Physiol. 1983;245:R768–75. doi:10.1152/ajpregu.1983.245.6.R768. PMID: 6660320.
  • Dedrick RL, Bischoff KB, Zaharko DS. Interspecies correlation of plasma concentration history of methotrexate (NSC-740). Cancer Chemother Rep. 1970;54:95–101. PMID: 5003581.
  • Offman E, Edginton AN. Contrasting toxicokinetic evaluations and interspecies pharmacokinetic scaling approaches for small molecules and biologics: applicability to biosimilar development. Xenobiotica. 2012;43:561–69. doi:10.3109/00498254.2012.744113. PMID: 23244626.
  • Oitate M, Nakayama S, Ito T, Kurihara A, Okudaira N, Izumi T. Prediction of human plasma concentration-time profiles of monoclonal antibodies from monkey data by a species-invariant time method. Drug Metab Pharmacokinet. 2012;27(3):354–59. doi:10.2133/dmpk.dmpk-11-sh-059. PMID: 22146109.
  • Vugmeyster Y, Rohde C, Perreault M, Gimeno RE, Singh P. Agonistic TAM-163 antibody targeting tyrosine kinase receptor-B: applying mechanistic modeling to enable preclinical to clinical translation and guide clinical trial design. Mabs. 2013;5(3):373–83. doi:10.4161/mabs.23826. PMID: 23529133.
  • Park WS, Han S, Lee J, Hong T, Won J, Lim Y, Lee K, Byun HY, Yim DS. Use of a target‐mediated drug disposition model to predict the human pharmacokinetics and target occupancy of GC1118, an anti‐epidermal growth factor receptor antibody. Basic Clin Pharmacol. 2017;120:243–49. doi:10.1111/bcpt.12675. PMID: 27637171.
  • Roepcke S, Plock N, Yuan J, Fedyk ER, Lahu G, Zhao L, Smithson G. Pharmacokinetics and pharmacodynamics of the cytolytic anti‐CD38 human monoclonal antibody TAK‐079 in monkey – model assisted preparation for the first in human trial. Pharmacol Res Perspectives. 2018;6:e00402. doi:10.1002/prp2.402. PMID: 29864242.
  • Biliouris K, Nestorov I, Naik H, Dai D, Xiao G, Wang Q, Pellerin A, Rabah D, Lesko LJ, Trame MN. A pre-clinical quantitative model predicts the pharmacokinetics/pharmacodynamics of an anti-BDCA2 monoclonal antibody in humans. J Pharmacokinet Phar. 2018;45:817–27. doi:10.1007/s10928-018-9609-6. PMID: 30377889.
  • Ette EI, Williams PJ. Population pharmacokinetics I: background, concepts, and models. Ann Pharmacother. 2004;38(10):1702–06. doi:10.1345/aph.1d374. PMID: 15328391.
  • Dubois A, Gsteiger S, Balser S, Pigeolet E, Steimer JL, Pillai G, Mentré F. Pharmacokinetic similarity of biologics: analysis using nonlinear mixed‐effects modeling. Clin Pharmacol Ther. 2012;91:234–42. doi:10.1038/clpt.2011.216. PMID: 22205196.
  • Mulugeta Y, Barrett JS, Nelson R, Eshete AT, Mushtaq A, Yao L, Glasgow N, Mulberg AE, Gonzalez D, Green D. Exposure matching for extrapolation of efficacy in pediatric drug development. J Clin Pharmacol. 2016;56:1326–34. doi:10.1002/jcph.744. PMID: 27040726.
  • Mehrotra N, Bhattaram A, Earp JC, Florian J, Krudys K, Lee JE, Lee JY, Liu J, Mulugeta Y, Yu J. Role of quantitative clinical pharmacology in pediatric approval and labeling. Drug Metab Dispos. 2016;44(7):924–33. doi:10.1124/dmd.116.069559. PMID: 27079249.
  • Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Phar. 2001;28:507–32. doi:10.1023/a:1014414520282. PMID: 11999290.
  • Gibiansky L, Gibiansky E, Kakkar T, Ma P. Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Phar. 2008;35:573–91. doi:10.1007/s10928-008-9102-8. PMID: 19005743.
  • Mager DE, Krzyzanski W. Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res. 2005;22(10):1589–96. doi:10.1007/s11095-005-6650-0. PMID: 16180117.
  • Kagan L, Zhao J, Mager DE. Interspecies pharmacokinetic modeling of subcutaneous absorption of rituximab in mice and rats. Pharm Res. 2014;31(12):3265–73. doi:10.1007/s11095-014-1416-1. PMID: 24852895.
  • Shah DK, Betts AM. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Phar. 2012;39:67–86. doi:10.1007/s10928-011-9232-2. PMID: 22143261.
  • Malik PRV, Edginton AN. Physiologically‐based pharmacokinetic modeling vs. allometric scaling for the prediction of infliximab pharmacokinetics in pediatric patients. Cpt Pharmacometrics Syst Pharmacol. 2019;8:835–44. doi:10.1002/psp4.12456. PMID: 31343836.
  • Jones HM, Zhang Z, Jasper P, Luo H, Avery LB, King LE, Neubert H, Barton HA, Betts AM, Webster R. A physiologically‐based pharmacokinetic model for the prediction of monoclonal antibody pharmacokinetics from in vitro data. Cpt Pharmacometrics Syst Pharmacol. 2019;8:738–47. doi:10.1002/psp4.12461. PMID: 31464379.
  • Hardiansyah D, Ng CM. Effects of the FcRn developmental pharmacology on the pharmacokinetics of therapeutic monoclonal IgG antibody in pediatric subjects using minimal physiologically-based pharmacokinetic modelling. Mabs. 2018;10:1–13. doi:10.1080/19420862.2018.1494479. PMID: 29969360.
  • Ince I, Solodenko J, Frechen S, Dallmann A, Niederalt C, Schlender J, Burghaus R, Lippert J, Willmann S. Predictive pediatric modeling and simulation using ontogeny information. J Clin Pharmacol. 2019;59(S1):S95–S103. doi:10.1002/jcph.1497. PMID: 31502689.
  • Gill KL, Gardner I, Li L, Jamei M. A bottom-up whole-body physiologically based pharmacokinetic model to mechanistically predict tissue distribution and the rate of subcutaneous absorption of therapeutic Proteins. Aaps J. 2016;18:156–70. doi:10.1208/s12248-015-9819-4. PMID: 26408308.
  • Zheng S, Gaitonde P, Andrew MA, Gibbs MA, Lesko LJ, Schmidt S. Model‐based assessment of dosing strategies in children for monoclonal antibodies exhibiting target‐mediated drug disposition. Cpt Pharmacometrics Syst Pharmacol. 2014;3:1–10. doi:10.1038/psp.2014.38. PMID: 25271939.
  • Covell DG, Barbet J, Holton OD, Black CD, Parker RJ, Weinstein JN. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab’)2, and Fab’ in mice. Cancer Res. 1986;46:3969–78. PMID: 3731067.
  • Baxter LT, Zhu H, Mackensen DG, Jain RK. Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res. 1994;54:1517–28. PMID: 8137258.
  • Glassman PM, Balthasar JP. Physiologically-based pharmacokinetic modeling to predict the clinical pharmacokinetics of monoclonal antibodies. J Pharmacokinet Phar. 2016;43:427–46. doi:10.1007/s10928-016-9482-0. PMID: 27377311.
  • Davda JP, Jain M, Batra SK, Gwilt PR, Robinson DH. A physiologically based pharmacokinetic (PBPK) model to characterize and predict the disposition of monoclonal antibody CC49 and its single chain Fv constructs. Int Immunopharmacol. 2008;8(3):401–13. doi:10.1016/j.intimp.2007.10.023. PMID: 18279794.
  • Chen X, DuBois DC, Almon RR, Jusko WJ. Characterization and interspecies scaling of rhTNF-α pharmacokinetics with minimal physiologically-based pharmacokinetic (mPBPK) models. Drug Metab Dispos. 2017;45:798–806. doi:10.1124/dmd.116.074799. PMID: 28411279.
  • Cao Y, Jusko WJ. Applications of minimal physiologically-based pharmacokinetic models. J Pharmacokinet Phar. 2012;39:711–23. doi:10.1007/s10928-012-9280-2. PMID: 23179857.
  • Baxter LT, Zhu H, Mackensen DG, Butler WF, Jam RK. Biodistribution of monoclonal antibodies: scale-up from mouse to human using a physiologically based pharmacokinetic model. Cancer Res. 1995;55:4611–22. PMID: 7553638.
  • Vugmeyster Y, Szklut P, Tchistiakova L, Abraham W, Kasaian M, Xu X. Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of humanized monoclonal anti-IL-13 antibodies with different IL-13 neutralization mechanisms. Int Immunopharmacol. 2008;8(3):477–83. doi:10.1016/j.intimp.2007.12.004. PMID: 18279802.
  • Petkova SB, Akilesh S, Sproule TJ, Christianson GJ, Khabbaz HA, Brown AC, Presta LG, Meng YG, Roopenian DC. Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease. Int Immunol. 2006;18(12):1759–69. doi:10.1093/intimm/dxl110. PMID: 17077181.
  • Tam SH, McCarthy SG, Brosnan K, Goldberg KM, Scallon BJ. Correlations between pharmacokinetics of IgG antibodies in primates vs. FcRn-transgenic mice reveal a rodent model with predictive capabilities. Mabs. 2013;5(3):397–405. doi:10.4161/mabs.23836. PMID: 23549129.
  • Dostalek M, Prueksaritanont T, Kelley RF. Pharmacokinetic de-risking tools for selection of monoclonal antibody lead candidates. Mabs. 2017;9(5):756–66. doi:10.1080/19420862.2017.1323160. PMID: 28463063.
  • Lin YS, Nguyen C, Mendoza J-L, Escandon E, Fei D, Meng YG, Modi NB. Preclinical pharmacokinetics, interspecies scaling, and tissue distribution of a humanized monoclonal antibody against vascular endothelial growth factor. J Pharmacol Exp Ther. 1999;288:371–78. PMID: 9862791.
  • Kelley SK, Gelzleichter T, Xie D, Lee WP, Darbonne WC, Qureshi F, Kissler K, Oflazoglu E, Grewal IS. Preclinical pharmacokinetics, pharmacodynamics, and activity of a humanized anti‐CD40 antibody (SGN‐40) in rodents and non‐human primates. Brit J Pharmacol. 2006;148:1116–23. doi:10.1038/sj.bjp.0706828. PMID: 16847437.
  • Duconge J, Castillo R, Crombet T, Alvarez D, Matheu J, Vecino G, Alonso K, Beausoleil I, Valenzuela C, Becquer MA. Integrated pharmacokinetic–pharmacodynamic modeling and allometric scaling for optimizing the dosage regimen of the monoclonal ior EGF/r3 antibody. Eur J Pharm Sci. 2004;21(2–3):261–70. doi:10.1016/j.ejps.2003.10.015. PMID: 14757498.
  • Singh AP, Shah DK. Application of a PK-PD modeling and simulation-based strategy for clinical translation of antibody-drug conjugates: a case study with trastuzumab emtansine (T-DM1). Aaps J. 2017;19:1054–70. doi:10.1208/s12248-017-0071-y. PMID: 28374319.
  • U. S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Guidance for industry. estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. 2005. [ accessed 02 June 2021]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/estimating-maximum-safe-starting-dose-initial-clinical-trials-therapeutics-adult-healthy-volunteers
  • Hansen AR, Cook N, Ricci MS, Razak A, Tourneau CL, McKeever K, Roskos L, Dixit R, Siu LL, Hinrichs MJ. Choice of starting dose for biopharmaceuticals in first‐in‐human phase I cancer clinical trials. Oncol. 2015;20:653–59. doi:10.1634/theoncologist.2015-0008. PMID: 25964306.
  • Muller PY, Milton M, Lloyd P, Sims J, Brennan FR. The minimum anticipated biological effect level (MABEL) for selection of first human dose in clinical trials with monoclonal antibodies. Curr Opin Biotech. 2009;20(6):722–29. doi:10.1016/j.copbio.2009.10.013. PMID: 19896825.
  • EMA Committee for Medicinal Products for Human Use (CHMP). Guideline on strategies to identify and mitigate risks for first-in-human and early clinical trials with investigational medicinal products. 2017. [ accessed 02 June 2021]. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-strategies-identify-mitigate-risks-first-human-early-clinical-trials-investigational_en.pdf
  • Mishra A, Sarangi SC, Reeta K. First-in-human dose: current status review for better future perspectives. Eur J Clin Pharmacol. 2020;76(9):1237–43. doi:10.1007/s00228-020-02924-x. PMID: 32488334.
  • EMA Committee for medicinal products for human use (CHMP). Guideline on requirements for first-in-man clinical trials for potential high-risk medicinal products. 2007. [ accessed 02 June 2021]. Available from: https://www.ema.europa.eu/documents/scientific-guideline/draft-guideline-requirements-first-man-clinical-trials-potential-high-risk-medicinal-products-first_en.pdf
  • European Medicines Agency. Press release ‘First-in-man’ clinical trials guideline released for public consultation. 2007. [ accessed 02 June 2021]. Available from: https://www.ema.europa.eu/documents/press-release/first-man-clinical-trials-guideline-released-public-consultation_en.pdf
  • Saber H, Valle PD, Ricks TK, Leighton JK. An FDA oncology analysis of CD3 bispecific constructs and first-in-human dose selection. Regul Toxicol Pharm. 2017;90:144–52. doi:10.1016/j.yrtph.2017.09.001. PMID: 28887049.
  • EMA Committee for Medicinal Products for Human Use (CHMP). ICH guideline M3(R2) on non-clinical safety studies for the conduct of human clinical trials and marketing authorisation for pharmaceuticals. 2009. [ accessed 02 June 2021]. Available from: https://www.ema.europa.eu/documents/scientific-guideline/ich-guideline-m3r2-non-clinical-safety-studies-conduct-human-clinical-trials-marketing-authorisation_en.pdf
  • U. S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER). Guidance for industry. S9 nonclinical evaluation for anticancer pharmaceuticals. 2010. [ accessed 30 April 2021]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/s9-nonclinical-evaluation-anticancer-pharmaceuticals
  • Saber H, Leighton JK. An FDA oncology analysis of antibody-drug conjugates. Regul Toxicol Pharm. 2015;71(3):444–52. doi:10.1016/j.yrtph.2015.01.014. PMID: 25661711.
  • Saber H, Gudi R, Manning M, Wearne E, Leighton JK. An FDA oncology analysis of immune activating products and first-in-human dose selection. Regul Toxicol Pharm. 2016;81:448–56. doi:10.1016/j.yrtph.2016.10.002. PMID: 27743776.
  • Germovsek E, Barker CIS, Sharland M, Standing JF. Scaling clearance in paediatric pharmacokinetics: all models are wrong, which are useful?. Brit J Clin Pharmaco. 2017;83:777–90. doi:10.1111/bcp.13160. PMID: 27767204.
  • Sharma S, Eckert D, Hyams JS, Mensing S, Thakkar RB, Robinson AM, Rosh JR, Ruemmele FM, Awni WM. Pharmacokinetics and exposure–efficacy relationship of adalimumab in pediatric patients with moderate to severe crohn’s disease. Inflamm Bowel Dis. 2015;21:783–92. doi:10.1097/mib.0000000000000327. PMID: 25723614.
  • Shemesh CS, Chanu P, Jamsen K, Wada R, Rossato G, Donaldson F, Garg A, Winter H, Ruppel J, Wang X. Population pharmacokinetics, exposure-safety, and immunogenicity of atezolizumab in pediatric and young adult patients with cancer. J Immunother Cancer. 2019;7(1):314. doi:10.1186/s40425-019-0791-x. PMID: 31753029.
  • Fasanmade AA, Adedokun OJ, Blank M, Zhou H, Davis HM. Pharmacokinetic properties of infliximab in children and adults with crohn’s disease: a retrospective analysis of data from 2 phase III clinical trials. Clin Ther. 2011;33:946–64. doi:10.1016/j.clinthera.2011.06.002. PMID: 21741088.
  • Sun H, Van LM, Floch D, Jiang X, Klein UR, Abrams K, Sunkara G. Pharmacokinetics and pharmacodynamics of canakinumab in patients with systemic juvenile idiopathic arthritis. J Clin Pharmacol. 2016;56(12):1516–27. doi:10.1002/jcph.754. PMID: 27119439.
  • Yee KL, Kleijn HJ, Kerbusch T, Matthews RP, Dorr MB, Garey KW, Wrishko RE. Population pharmacokinetics and pharmacodynamics of bezlotoxumab in adults with primary and recurrent clostridium difficile infection. Antimicrob Agents Chemother. 2019. doi:10.1128/aac.01971-18. PMID: 30455246.
  • Lowe PJ, Renard D. Omalizumab decreases IgE production in patients with allergic (IgE‐mediated) asthma; PKPD analysis of a biomarker, total IgE. Brit J Clin Pharmaco. 2011;72:306–20. doi:10.1111/j.1365-2125.2011.03962.x. PMID: 21392073.
  • Lowe PJ, Tannenbaum S, Gautier A, Jimenez P. Relationship between omalizumab pharmacokinetics, IgE pharmacodynamics and symptoms in patients with severe persistent allergic (IgE‐mediated) asthma. Brit J Clin Pharmaco. 2009;68:61–76. doi:10.1111/j.1365-2125.2009.03401.x. PMID: 19660004.
  • Chakraborty A, Tannenbaum S, Rordorf C, Lowe PJ, Floch D, Gram H, Roy S. Pharmacokinetic and pharmacodynamic properties of canakinumab, a human anti-interleukin-1β monoclonal antibody. Clin Pharmacokinet. 2012;51(6):e1–e18. doi:10.2165/11599820-000000000-00000. PMID: 22550964.
  • Ahamadi M, Freshwater T, Prohn M, Li CH, DPd A, Greef R, Elassaiss‐Schaap J, Kondic A, Stone JA. Model‐based characterization of the pharmacokinetics of pembrolizumab: a humanized anti–PD‐1 monoclonal antibody in advanced solid tumors. Cpt Pharmacometrics Syst Pharmacol. 2017;6:49–57. doi:10.1002/psp4.12139. PMID: 27863186.
  • Li H, Han TH, Hunder NN, Jang G, Zhao B. Population pharmacokinetics of brentuximab vedotin in patients with CD30‐expressing hematologic malignancies. J Clin Pharmacol. 2017;57:1148–58. doi:10.1002/jcph.920. PMID: 28513851.
  • Xu Y, Adedokun OJ, Chan D, Hu C, Xu Z, Strauss RS, Hyams JS, Turner D, Zhou H. Population pharmacokinetics and exposure‐response modeling analyses of golimumab in children with moderately to severely active ulcerative colitis. J Clin Pharmacol. 2019;59:590–604. doi:10.1002/jcph.1353. PMID: 30536638.
  • Admiraal R, Zijde CMJ-V, Silva JMF, Knibbe CAJ, Lankester AC, Boelens JJ, Hale G, Etuk A, Wilson M, Adams S. Population pharmacokinetics of alemtuzumab (campath) in pediatric hematopoietic cell transplantation: towards individualized dosing to improve outcome. Clin Pharmacokinet. 2019;58:1609–20. doi:10.1007/s40262-019-00782-0. PMID: 31131436.
  • Lee SK. Resting energy expenditure and the clearance of therapeutic Proteins in pediatric subjects. Pharmacology. 2014;93(5–6):225–28. doi:10.1159/000362562. PMID: 25012840.
  • Gupta A, Pouliquen I, Austin D, Price RG, Kempsford R, Steinfeld J, Bradford ES, Yancey SW. Subcutaneous mepolizumab in children aged 6 to 11 years with severe eosinophilic asthma. Pediatr Pulm. 2019;54:1957–67. doi:10.1002/ppul.24508. PMID: 31502421.
  • Turner DC, Navid F, Daw NC, Mao S, Wu J, Santana VM, Neel M, Rao B, Willert JR, Loeb DM. Population pharmacokinetics of bevacizumab in children with osteosarcoma: implications for dosing. Clin Cancer Res. 2014;20:2783–92. doi:10.1158/1078-0432.ccr-13-2364. PMID: 24637635.
  • Mahmood I. Prediction of clearance of monoclonal and polyclonal antibodies and non-antibody Proteins in children: application of allometric scaling. Antibodies. 2020;9(3):40. doi:10.3390/antib9030040. PMID: 32764408.
  • Mohamed MEF, Rakhmanina N, Hassan HE. Inclusion of adolescents with adults in phase 3 clinical trials: overview of the current state and a call for action. J Clin Pharmacol. 2020. doi:10.1002/jcph.1591. PMID: 32119133.
  • U. S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER), Oncology Center of Excellence (OCE). Considerations for the inclusion of adolescent patients in adult oncology clinical trials. 2019. [ accessed 02 June 2021]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-inclusion-adolescent-patients-adult-oncology-clinical-trials
  • Roberts JK, Stockmann C, Balch A, Yu T, Ward RM, Spigarelli MG, Sherwin CMT. Optimal design in pediatric pharmacokinetic and pharmacodynamic clinical studies. Pediatr Anesth. 2015;25:222–30. doi:10.1111/pan.12575. PMID: 25580772.
  • Eleveld DJ, Proost JH, Absalom AR, Struys MMRF. Obesity and allometric scaling of pharmacokinetics. Clin Pharmacokinet. 2011;50:751–53. doi:10.2165/11594080-000000000-00000. PMID: 21973272.
  • Gómez-Mantilla JD, Trocóniz IF, Parra-Guillén Z, Garrido MJ. Review on modeling anti-antibody responses to monoclonal antibodies. J Pharmacokinet Phar. 2014;41:523–36. doi:10.1007/s10928-014-9367-z. PMID: 25027160.
  • Mager DE, Woo S, Jusko WJ. Scaling pharmacodynamics from in vitro and preclinical animal studies to humans. Drug Metab Pharmacokinet. 2009;1:16–24. doi:10.2133/dmpk.24.16. PMID: 19252333.
  • Deng R, Zhou C, Li D, Cai H, Sukumaran S, Carrasco-Triguero M, Saad O, Nazzal D, Lowe C, Ramanujan S. Preclinical and translational pharmacokinetics of a novel THIOMAB™ antibody-antibiotic conjugate against staphylococcus aureus. Mabs. 2019;11:1–13. doi:10.1080/19420862.2019.1627152. PMID: 31219754.
  • Bouillon‐Pichault M, Brillac C, Amara C, Nicolazzi C, Fagniez N, Fau JB, Koiwai K, Ziti‐Ljajic S, Veyrat‐Follet C. Translational model‐based strategy to guide the choice of clinical doses for antibody–drug conjugates. J Clin Pharmacol. 2017;57:865–75. doi:10.1002/jcph.869. PMID: 28138963.
  • Li C, Zhang C, Deng R, Leipold D, Li D, Latifi B, Gao Y, Zhang C, Li Z, Miles D. Prediction of human pharmacokinetics of antibody–drug conjugates from nonclinical data. Clin Transl Sci. 2019;12:534–44. doi:10.1111/cts.12649. PMID: 31115997.
  • Haddish-Berhane N, Shah DK, Ma D, Leal M, Gerber H-P, Sapra P, Barton HA, Betts AM. On translation of antibody drug conjugates efficacy from mouse experimental tumors to the clinic: a PK/PD approach. J Pharmacokinet Phar. 2013;40:557–71. doi:10.1007/s10928-013-9329-x. PMID: 23933716.
  • Ferl GZ, Reyes A, Sun LL, Cheu M, Oldendorp A, Ramanujan S, Stefanich EG. A preclinical population pharmacokinetic model for anti‐CD20/CD3 T‐cell‐dependent bispecific antibodies. Clin Transl Sci. 2018;11:296–304. doi:10.1111/cts.12535. PMID: 29351372.
  • Campagne O, Delmas A, Fouliard S, Chenel M, Chichili GR, Li H, Alderson R, Scherrmann J-M, Mager DE. Integrated pharmacokinetic/pharmacodynamic model of a bispecific CD3xCD123 DART® molecule in nonhuman primates: evaluation of activity and impact of immunogenicity. Clin Cancer Res. 2018;24:2631–41. doi:10.1158/1078-0432.ccr-17-2265. PMID: 29463552.
  • Chen X, Haddish‐Berhane N, Moore P, Clark T, Yang Y, Li H, Xuan D, Barton HA, Betts AM, Barletta F. Mechanistic projection of first‐in‐human dose for bispecific immunomodulatory P‐Cadherin LP‐DART: an integrated PK/PD modeling approach. Clin Pharmacol Ther. 2016;100:232–41. doi:10.1002/cpt.393. PMID: 27170541.