12,653
Views
16
CrossRef citations to date
0
Altmetric
Review

Ten years in the making: application of CrossMab technology for the development of therapeutic bispecific antibodies and antibody fusion proteins

, & ORCID Icon
Article: 1967714 | Received 15 Jul 2021, Accepted 10 Aug 2021, Published online: 07 Sep 2021

References

  • Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs. 2017;9(2):182–17. PubMed PMID: 28071970; PubMed Central PMCID: PMCPMC5297537. doi:10.1080/19420862.2016.1268307. Feb/Mar.
  • Labrijn AF, Janmaat ML, Reichert JM, et al. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov. 2019 Aug;18(8):585–608. 10.1038/s41573-019-0028-1: PubMed PMID: 31175342
  • Carter PJ, Lazar GA. Next generation antibody drugs: pursuit of the ‘high-hanging fruit’. Nat Rev Drug Discov. 2018 Mar;17(3):197–223. PubMed PMID: 29192287. doi:10.1038/nrd.2017.227.
  • Sheridan C. Bispecific antibodies poised to deliver wave of cancer therapies. Nat Biotechnol. 2021 Mar;39(3):251–54. PubMed PMID: 33692520. doi:10.1038/s41587-021-00850-6.
  • Suurs FV, Lub-de Hooge MN, De Vries EGE, et al. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol Ther. 2019 Sep;201:103–19. doi:10.1016/j.pharmthera.2019.04.006. PubMed PMID: 31028837.
  • Zhang J, Yi J, Zhou P. Development of bispecific antibodies in China: overview and prospects. Antib Ther. 2020 Apr;3(2):126–45. doi:10.1093/abt/tbaa011. PubMed PMID: 33928227; PubMed Central PMCID: PMCPMC7990247.
  • Kitazawa T, Igawa T, Sampei Z, et al. A bispecific antibody to factors IXa and X restores factor VIII hemostatic activity in a hemophilia A model. Nat Med. 2012 Oct;18(10):1570–74. 10.1038/nm.2942: PubMed PMID: 23023498
  • Kitazawa T, Esaki K, Tachibana T, et al. Factor VIIIa-mimetic cofactor activity of a bispecific antibody to factors IX/IXa and X/Xa, emicizumab, depends on its ability to bridge the antigens. Thromb Haemost. 2017 Jun 28;117(7):1348–57. PubMed PMID: 28451690; PubMed Central PMCID: PMCPMC6292136. doi:10.1160/TH17-01-0030
  • Igawa T. Next generation antibody therapeutics using bispecific antibody technology. Yakugaku Zasshi. 2017;137(7):831–36. doi:10.1248/yakushi.16-00252-3. PubMed PMID: 28674296
  • Sampei Z, Igawa T, Soeda T, et al. Identification and multidimensional optimization of an asymmetric bispecific IgG antibody mimicking the function of factor VIII cofactor activity. PLoS One. 2013;8(2):e57479. PubMed PMID: 23468998; PubMed Central PMCID: PMCPMC3585358. doi:10.1371/journal.pone.0057479.
  • Skegro D, Stutz C, Ollier R, et al. Immunoglobulin domain interface exchange as a platform technology for the generation of Fc heterodimers and bispecific antibodies. J Biol Chem. 2017 Jun 9;292(23):9745–59. PubMed PMID: 28450393; PubMed Central PMCID: PMCPMC5465497. doi:10.1074/jbc.M117.782433
  • Einsele H, Borghaei H, Orlowski RZ, et al. The BiTE (bispecific T-cell engager) platform: development and future potential of a targeted immuno-oncology therapy across tumor types. Cancer. 2020 Jul 15;126(14):3192–201. PubMed PMID: 32401342. doi:10.1002/cncr.32909
  • Wolf E, Hofmeister R, Kufer P, et al. BiTEs: bispecific antibody constructs with unique anti-tumor activity. Drug Discov Today. 2005 Sep 15;10(18):1237–44. PubMed PMID: 16213416. doi:10.1016/S1359-6446(05)03554-3
  • De Nardis C, Hendriks LJA, Poirier E, et al. A new approach for generating bispecific antibodies based on a common light chain format and the stable architecture of human immunoglobulin G1. J Biol Chem. 2017 Sep 1;292(35):14706–17. PubMed PMID: 28655766; PubMed Central PMCID: PMCPMC5582861. doi:10.1074/jbc.M117.793497
  • Smith EJ, Olson K, Haber LJ, et al. A novel, native-format bispecific antibody triggering T-cell killing of B-cells is robustly active in mouse tumor models and cynomolgus monkeys. Sci Rep. 2015 Dec 11;5(1):17943. PubMed PMID: 26659273; PubMed Central PMCID: PMCPMC4675964. doi:10.1038/srep17943
  • Merchant AM, Zhu Z, Yuan JQ, et al. An efficient route to human bispecific IgG. Nat Biotechnol. 1998 Jul;16(7):677–81. 10.1038/nbt0798-677: PubMed PMID: 9661204
  • Bostrom J, Yu SF, Kan D, et al. Variants of the antibody herceptin that interact with HER2 and VEGF at the antigen binding site. Science. 2009 Mar 20;323(5921):1610–14. PubMed PMID: 19299620. doi:10.1126/science.1165480
  • Johnson S, Burke S, Huang L, et al. Effector cell recruitment with novel Fv-based dual-affinity re-targeting protein leads to potent tumor cytolysis and in vivo B-cell depletion. J Mol Biol. 2010 Jun 11;399(3):436–49. PubMed PMID: 20382161. doi:10.1016/j.jmb.2010.04.001
  • Labrijn AF, Meesters JI, De Goeij BE, et al. Efficient generation of stable bispecific IgG1 by controlled Fab-arm exchange. Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5145–50. PubMed PMID: 23479652; PubMed Central PMCID: PMCPMC3612680. doi:10.1073/pnas.1220145110
  • Beckmann R, Jensen K, Fenn S, et al. DutaFabs are engineered therapeutic Fab fragments that can bind two targets simultaneously. Nat Commun. 2021 Jan 29;12(1):708. PubMed PMID: 33514724; PubMed Central PMCID: PMCPMC7846786. doi:10.1038/s41467-021-20949-3
  • Wu C, Ying H, Grinnell C, et al. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol. 2007 Nov;25(11):1290–97. 10.1038/nbt1345: PubMed PMID: 17934452
  • Strop P, Ho WH, Boustany LM, et al. Generating bispecific human IgG1 and IgG2 antibodies from any antibody pair. J Mol Biol. 2012 Jul 13;420(3):204–19. PubMed PMID: 22543237. doi:10.1016/j.jmb.2012.04.020
  • Leung KM, Batey S, Rowlands R, et al. A HER2-specific modified fc fragment (fcab) induces antitumor effects through degradation of HER2 and Apoptosis. Mol Ther. 2015 Nov;23(11):1722–33. 10.1038/mt.2015.127: PubMed PMID: 26234505; PubMed Central PMCID: PMCPMC4817942
  • Woisetschlager M, Antes B, Borrowdale R, et al. In vivo and in vitro activity of an immunoglobulin Fc fragment (Fcab) with engineered Her-2/neu binding sites. Biotechnol J. 2014 Jun;9(6):844–51. 10.1002/biot.201300387: PubMed PMID: 24806546
  • Wozniak-Knopp G, Stadlmayr G, Perthold JW, et al. Designing Fcabs: well-expressed and stable high affinity antigen-binding Fc fragments. Protein Eng Des Sel. 2017 Sep 1;30(9):657–71. PubMed PMID: 28981753. doi:10.1093/protein/gzx042
  • Dengl S, Mayer K, Bormann F, et al. Format chain exchange (FORCE) for high-throughput generation of bispecific antibodies in combinatorial binder-format matrices. Nat Commun. 2020 Oct 2;11(1):4974. PubMed PMID: 33009381; PubMed Central PMCID: PMCPMC7532213. doi:10.1038/s41467-020-18477-7
  • Spiess C, Merchant M, Huang A, et al. Bispecific antibodies with natural architecture produced by co-culture of bacteria expressing two distinct half-antibodies. Nat Biotechnol. 2013 Aug;31(8):753–58. 10.1038/nbt.2621: PubMed PMID: 23831709
  • Liu Z, Leng EC, Gunasekaran K, et al. A novel antibody engineering strategy for making monovalent bispecific heterodimeric IgG antibodies by electrostatic steering mechanism. J Biol Chem. 2015 Mar 20;290(12):7535–62. PubMed PMID: 25583986; PubMed Central PMCID: PMCPMC4367261. doi:10.1074/jbc.M114.620260
  • Gunasekaran K, Pentony M, Shen M, et al. Enhancing antibody Fc heterodimer formation through electrostatic steering effects: applications to bispecific molecules and monovalent IgG. J Biol Chem. 2010 Jun 18;285(25):19637–46. PubMed PMID: 20400508; PubMed Central PMCID: PMCPMC2885242. doi:10.1074/jbc.M110.117382
  • Coloma MJ, Morrison SL. Design and production of novel tetravalent bispecific antibodies. Nat Biotechnol. 1997 Feb;15(2):159–63. PubMed PMID: 9035142. doi:10.1038/nbt0297-159.
  • Dong J, Sereno A, Aivazian D, et al. A stable IgG-like bispecific antibody targeting the epidermal growth factor receptor and the type I insulin-like growth factor receptor demonstrates superior anti-tumor activity. MAbs. 2011 May-Jun;3(3):273–88. 10.4161/mabs.3.3.15188: PubMed PMID: 21393993; PubMed Central PMCID: PMCPMC3149708
  • Fischer N, Elson G, Magistrelli G, et al. Exploiting light chains for the scalable generation and platform purification of native human bispecific IgG. Nat Commun. 2015 Feb 12;6:6113. 10.1038/ncomms7113: PubMed PMID: 25672245; PubMed Central PMCID: PMCPMC4339886
  • Lewis SM, Wu X, Pustilnik A, et al. Generation of bispecific IgG antibodies by structure-based design of an orthogonal Fab interface. Nat Biotechnol. 2014 Feb;32(2):191–98. 10.1038/nbt.2797: PubMed PMID: 24463572
  • Cochlovius B, Kipriyanov SM, Stassar MJ, et al. Cure of Burkitt’s lymphoma in severe combined immunodeficiency mice by T cells, tetravalent CD3 x CD19 tandem diabody, and CD28 costimulation. Cancer Res. 2000 Aug 15;60(16):4336–41. PubMed PMID: 10969772.
  • Moore GL, Bernett MJ, Rashid R, et al. A robust heterodimeric Fc platform engineered for efficient development of bispecific antibodies of multiple formats. Methods. 2019 Feb 1;154:38–50. 10.1016/j.ymeth.2018.10.006: PubMed PMID: 30366098
  • Guo G, Han J, Wang Y, et al. A potential downstream platform approach for WuXiBody-based IgG-like bispecific antibodies. Protein Expr Purif. 2020 Sep;173:105647. doi:10.1016/j.pep.2020.105647. PubMed PMID: 32334139.
  • Bargou R, Leo E, Zugmaier G, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 2008 Aug 15;321(5891):974–77. PubMed PMID: 18703743. doi:10.1126/science.1158545
  • Neijssen J, Cardoso RMF, Chevalier KM, et al. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J Biol Chem. 2021 Apr;8:100641. doi:10.1016/j.jbc.2021.100641. PubMed PMID: 33839159; PubMed Central PMCID: PMCPMC8113745.
  • Vijayaraghavan S, Lipfert L, Chevalier K, et al. Amivantamab (JNJ-61186372), an Fc Enhanced EGFR/cMet Bispecific Antibody, Induces Receptor Downmodulation and Antitumor Activity by Monocyte/Macrophage Trogocytosis. Mol Cancer Ther. 2020 Oct;19(10):2044–56. 10.1158/1535-7163.MCT-20-0071: PubMed PMID: 32747419
  • Yun J, Lee SH, Kim SY, et al. Antitumor Activity of Amivantamab (JNJ-61186372), an EGFR-MET bispecific antibody, in diverse models of EGFR Exon 20 Insertion-Driven NSCLC. Cancer Discov. 2020 Aug;10(8):1194–209. 10.1158/2159-8290.CD-20-0116: PubMed PMID: 32414908
  • Schaefer W, Regula JT, Bahner M, et al. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11187–92. PubMed PMID: 21690412; PubMed Central PMCID: PMCPMC3131342. doi:10.1073/pnas.1019002108
  • Klein C, Sustmann C, Thomas M, et al. Progress in overcoming the chain association issue in bispecific heterodimeric IgG antibodies. MAbs. 2012 Nov-Dec;4(6):653–63. 10.4161/mabs.21379: PubMed PMID: 22925968; PubMed Central PMCID: PMCPMC3502232
  • Grote M, Haas AK, Klein C, et al. Bispecific antibody derivatives based on full-length IgG formats. Methods Mol Biol. 2012;901:247–63. PubMed PMID: 22723106. doi:10.1007/978-1-61779-931-0_16.
  • Klein C, Schaefer W, Regula JT. The use of CrossMAb technology for the generation of bi- and multispecific antibodies. MAbs. 2016 Aug-Sep;8(6):1010–20. PubMed PMID: 27285945; PubMed Central PMCID: PMCPMC4968094. doi:10.1080/19420862.2016.1197457.
  • Klein C, Schaefer W, Regula JT, et al. Engineering therapeutic bispecific antibodies using CrossMab technology. Methods. 2019 Feb 1;154:21–31. 10.1016/j.ymeth.2018.11.008: PubMed PMID: 30453028
  • Schaefer W, Volger HR, Lorenz S, et al. Heavy and light chain pairing of bivalent quadroma and knobs-into-holes antibodies analyzed by UHR-ESI-QTOF mass spectrometry. MAbs. 2016;8(1):49–55. PubMed PMID: 26496506; PubMed Central PMCID: PMCPMC4966523. doi:10.1080/19420862.2015.1111498.
  • Ridgway JB, Presta LG, Carter P. ‘Knobs-into-holes’ engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 1996 Jul;9(7):617–21. doi:10.1093/protein/9.7.617. PubMed PMID: 8844834.
  • Kuglstatter A, Stihle M, Neumann C, et al. Structural differences between glycosylated, disulfide-linked heterodimeric Knob-into-Hole Fc fragment and its homodimeric Knob-Knob and Hole-Hole side products. Protein Eng Des Sel. 2017 Sep 1;30(9):649–56. PubMed PMID: 28985438. doi:10.1093/protein/gzx041
  • Stutz C, Blein S. A single mutation increases heavy-chain heterodimer assembly of bispecific antibodies by inducing structural disorder in one homodimer species. J Biol Chem. 2020 Jul 10;295(28):9392–408. PubMed PMID: 32404368; PubMed Central PMCID: PMCPMC7363136. doi:10.1074/jbc.RA119.012335.
  • Gong S, Ren F, Wu D, et al. Fabs-in-tandem immunoglobulin is a novel and versatile bispecific design for engaging multiple therapeutic targets. MAbs. 2017 Oct 9;7:1118–28. doi:10.1080/19420862.2017.1345401. PubMed PMID: 28692328; PubMed Central PMCID: PMCPMC5627593.
  • Gong S, Wu C. Generation of Fabs-in-tandem immunoglobulin molecules for dual-specific targeting. Methods. 2019 Feb 1;154:87–92. doi:10.1016/j.ymeth.2018.07.014. PubMed PMID: 30081078.
  • Fenn S, Schiller CB, Griese JJ, et al. Crystal structure of an anti-Ang2 CrossFab demonstrates complete structural and functional integrity of the variable domain. PLoS One. 2013;8(4):e61953. PubMed PMID: 23613981; PubMed Central PMCID: PMCPMC3629102. doi:10.1371/journal.pone.0061953.
  • Regula JT, Imhof-Jung S, Molhoj M, et al. Variable heavy-variable light domain and Fab-arm CrossMabs with charged residue exchanges to enforce correct light chain assembly. Protein Eng Des Sel. 2018 Jul 1;31(7–8):289–99. PubMed PMID: 30169707; PubMed Central PMCID: PMCPMC6277175. doi:10.1093/protein/gzy021
  • Sustmann C, Dickopf S, Regula JT, et al. DuoMab: a novel CrossMab-based IgG-derived antibody format for enhanced antibody-dependent cell-mediated cytotoxicity. MAbs. 2019 Nov-Dec;11(8):1402–14. 10.1080/19420862.2019.1661736: PubMed PMID: 31526159; PubMed Central PMCID: PMCPMC6816436
  • Wu X, Yuan R, Bacica M, et al. Generation of orthogonal Fab-based trispecific antibody formats. Protein Eng Des Sel. 2018 Jul 1;31(7–8):249–56. PubMed PMID: 29718394. doi:10.1093/protein/gzy007
  • Wu X, Demarest SJ. Building blocks for bispecific and trispecific antibodies. Methods. 2019 Feb 1;154:3–9. doi:10.1016/j.ymeth.2018.08.010. PubMed PMID: 30172007.
  • Bethune MT, Gee MH, Bunse M, et al. Domain-swapped T cell receptors improve the safety of TCR gene therapy. Elife. 2016 Nov;8:5. doi:10.7554/eLife.19095. PubMed PMID: 27823582; PubMed Central PMCID: PMCPMC5101000.
  • Croasdale R, Wartha K, Schanzer JM, et al. Development of tetravalent IgG1 dual targeting IGF-1R-EGFR antibodies with potent tumor inhibition. Arch Biochem Biophys. 2012 Oct 15;526(2):206–18. PubMed PMID: 22464987. doi:10.1016/j.abb.2012.03.016
  • Scheuer W, Thomas M, Hanke P, et al. Anti-tumoral, anti-angiogenic and anti-metastatic efficacy of a tetravalent bispecific antibody (TAvi6) targeting VEGF-A and angiopoietin-2. MAbs. 2016;8(3):562–73. PubMed PMID: 26864324; PubMed Central PMCID: PMCPMC4966847. doi:10.1080/19420862.2016.1147640.
  • Schanzer J, Jekle A, Nezu J, et al. Development of tetravalent, bispecific CCR5 antibodies with antiviral activity against CCR5 monoclonal antibody-resistant HIV-1 strains. Antimicrob Agents Chemother. 2011 May;55(5):2369–78. 10.1128/AAC.00215-10: PubMed PMID: 21300827; PubMed Central PMCID: PMCPMC3088204
  • Castoldi R, Ecker V, Wiehle L, et al. A novel bispecific EGFR/Met antibody blocks tumor-promoting phenotypic effects induced by resistance to EGFR inhibition and has potent antitumor activity. Oncogene. 2013 Dec 12;32(50):5593–601. PubMed PMID: 23812422; PubMed Central PMCID: PMCPMC3898114. doi:10.1038/onc.2013.245
  • Castoldi R, Jucknischke U, Pradel LP, et al. Molecular characterization of novel trispecific ErbB-cMet-IGF1R antibodies and their antigen-binding properties. Protein Eng Des Sel. 2012 Oct;25(10):551–59. 10.1093/protein/gzs048: PubMed PMID: 22936109; PubMed Central PMCID: PMCPMC3449402
  • Castoldi R, Schanzer J, Panke C, et al. TetraMabs: simultaneous targeting of four oncogenic receptor tyrosine kinases for tumor growth inhibition in heterogeneous tumor cell populations. Protein Eng Des Sel. 2016 Oct;29(10):467–75. 10.1093/protein/gzw037: PubMed PMID: 27578890; PubMed Central PMCID: PMCPMC5036864
  • Schanzer JM, Wartha K, Croasdale R, et al. A novel glycoengineered bispecific antibody format for targeted inhibition of epidermal growth factor receptor (EGFR) and insulin-like growth factor receptor type I (IGF-1R) demonstrating unique molecular properties. J Biol Chem. 2014 Jul 4;289(27):18693–706. PubMed PMID: 24841203; PubMed Central PMCID: PMCPMC4081915. doi:10.1074/jbc.M113.528109
  • Schanzer JM, Wartha K, Moessner E, et al. XGFR*, a novel affinity-matured bispecific antibody targeting IGF-1R and EGFR with combined signaling inhibition and enhanced immune activation for the treatment of pancreatic cancer. MAbs. 2016 May-Jun;8(4):811–27. 10.1080/19420862.2016.1160989: PubMed PMID: 26984378; PubMed Central PMCID: PMCPMC4966845
  • Niewoehner J, Bohrmann B, Collin L, et al. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron. 2014 Jan 8;81(1):49–60. PubMed PMID: 24411731. doi:10.1016/j.neuron.2013.10.061
  • Weber F, Bohrmann B, Niewoehner J, et al. Brain shuttle antibody for alzheimer’s disease with attenuated peripheral effector function due to an inverted binding mode. Cell Rep. 2018 Jan 2;22(1):149–62. PubMed PMID: 29298417. doi:10.1016/j.celrep.2017.12.019
  • Dengl S, Wehmer M, Hesse F, et al. Aggregation and chemical modification of monoclonal antibodies under upstream processing conditions. Pharm Res. 2013 May;30(5):1380–99. 10.1007/s11095-013-0977-8: PubMed PMID: 23322133
  • Haberger M, Leiss M, Heidenreich AK, et al. Rapid characterization of biotherapeutic proteins by size-exclusion chromatography coupled to native mass spectrometry. MAbs. 2016;8(2):331–39. PubMed PMID: 26655595; PubMed Central PMCID: PMCPMC4966600. doi:10.1080/19420862.2015.1122150.
  • Lee YF, Kluters S, Hillmann M, et al. Modeling of bispecific antibody elution in mixed-mode cation-exchange chromatography. J Sep Sci. 2017 Sep;40(18):3632–45. 10.1002/jssc.201700313: PubMed PMID: 28714211
  • Meschendoerfer W, Gassner C, Lipsmeier F, et al. SPR-based assays enable the full functional analysis of bispecific molecules. J Pharm Biomed Anal. 2017 Jan 5;132:141–47. 10.1016/j.jpba.2016.09.028: PubMed PMID: 27721070
  • Lu Y, Zhou Q, Han Q, et al. Inactivation of deubiquitinase CYLD enhances therapeutic antibody production in Chinese hamster ovary cells. Appl Microbiol Biotechnol. 2018 Jul;102(14):6081–93. 10.1007/s00253-018-9070-x: PubMed PMID: 29766242
  • Gstottner C, Nicolardi S, Haberger M, et al. Intact and subunit-specific analysis of bispecific antibodies by sheathless CE-MS. Anal Chim Acta. 2020 Oct 16;1134:18–27. 10.1016/j.aca.2020.07.069: PubMed PMID: 33059862
  • Gstottner C, Reusch D, Haberger M, et al. Monitoring glycation levels of a bispecific monoclonal antibody at subunit level by ultrahigh-resolution MALDI FT-ICR mass spectrometry. MAbs. 2020 Jan-Dec;12(1):1682403. 10.1080/19420862.2019.1682403: PubMed PMID: 31630606; PubMed Central PMCID: PMCPMC6927770
  • Graf T, Heinrich K, Grunert I, et al. Recent advances in LC-MS based characterization of protein-based bio-therapeutics - mastering analytical challenges posed by the increasing format complexity. J Pharm Biomed Anal. 2020 Jul 15;186:113251. 10.1016/j.jpba.2020.113251: PubMed PMID: 32251978
  • Filep C, Szigeti M, Farsang R, et al. Multilevel capillary gel electrophoresis characterization of new antibody modalities. Anal Chim Acta. 2021 Jun 29;1166:338492. 10.1016/j.aca.2021.338492: PubMed PMID: 34023000
  • Chen SW, Zhang W. Current trends and challenges in the downstream purification of bispecific antibodies. Antib Ther. 2021 Apr;4(2):73–88. doi:10.1093/abt/tbab007. PubMed PMID: 34056544; PubMed Central PMCID: PMCPMC8155696.
  • Register AC, Tarighat SS, Lee HY. Bioassay development for bispecific antibodies-challenges and opportunities. Int J Mol Sci. 2021 May 19;22(10). PubMed PMID: 34069573; PubMed Central PMCID: PMCPMC8160952. doi:10.3390/ijms22105350.
  • Haberger M, Heidenreich AK, Hook M, et al. Multiattribute monitoring of antibody charge variants by cation-exchange chromatography coupled to native mass spectrometry. J Am Soc Mass Spectrom. 2021 Mar 9 [ PubMed PMID: 33687195]. doi:10.1021/jasms.0c00446.
  • Wan Y, Wang Y, Zhang T, et al. Application of pH-salt dual gradient elution in purifying a WuXiBody-based bispecific antibody by MMC ImpRes mixed-mode chromatography. Protein Expr Purif. 2021 May;181:105822. doi:10.1016/j.pep.2021.105822. PubMed PMID: 33429037.
  • Kienast Y, Klein C, Scheuer W, et al. Ang-2-VEGF-A CrossMab, a novel bispecific human IgG1 antibody blocking VEGF-A and Ang-2 functions simultaneously, mediates potent antitumor, antiangiogenic, and antimetastatic efficacy. Clin Cancer Res. 2013 Dec 15;19(24):6730–40. PubMed PMID: 24097868. doi:10.1158/1078-0432.CCR-13-0081
  • Regula JT, Lundh von Leithner P, Foxton R, et al. Targeting key angiogenic pathways with a bispecific Cross MAb optimized for neovascular eye diseases. EMBO Mol Med. 2016 Nov 8;8(11):1265–88. PubMed PMID: 27742718; PubMed Central PMCID: PMCPMC5090659. doi:10.15252/emmm.201505889
  • Regula JT, Lundh von Leithner P, Foxton R, et al. Targeting key angiogenic pathways with a bispecific CrossMAb optimized for neovascular eye diseases. EMBO Mol Med. 2019 May;11(5): 10.15252/emmm.201910666. PubMed PMID: 31040127; PubMed Central PMCID: PMCPMC6505574.
  • Bacac M, Fauti T, Sam J, et al. A novel carcinoembryonic antigen T-cell bispecific antibody (CEA TCB) for the treatment of solid tumors. Clin Cancer Res. 2016 Jul 1;22(13):3286–97. PubMed PMID: 26861458. doi:10.1158/1078-0432.CCR-15-1696
  • Brunker P, Wartha K, Friess T, et al. RG7386, a novel tetravalent FAP-DR5 antibody, effectively triggers fap-dependent, avidity-driven dr5 hyperclustering and tumor cell apoptosis. Mol Cancer Ther. 2016 May;15(5):946–57. 10.1158/1535-7163.MCT-15-0647: PubMed PMID: 27037412
  • Bacac M, Colombetti S, Herter S, et al. CD20-TCB with obinutuzumab pretreatment as next-generation treatment of hematologic malignancies. Clin Cancer Res. 2018 Oct 1;24(19):4785–97. PubMed PMID: 29716920. doi:10.1158/1078-0432.CCR-18-0455
  • Deak LLC, Seeber S, Perro M, et al. Abstract 2270: RG7769 (PD1-TIM3), a novel heterodimeric avidity-driven T cell specific PD-1/TIM-3 bispecific antibody lacking Fc-mediated effector functions for dual checkpoint inhibition to reactivate dysfunctional T cells. Cancer Research. 2020;80(16 Supplement):2270–2270. doi:10.1158/1538-7445.am2020-2270.
  • Seckinger A, Delgado JA, Moser S, et al. Target expression, generation, preclinical activity, and pharmacokinetics of the BCMA-T cell bispecific antibody EM801 for multiple myeloma treatment. Cancer Cell. 2017 Mar 13;31(3):396–410. PubMed PMID: 28262554. doi:10.1016/j.ccell.2017.02.002
  • Claus C, Ferrara C, Xu W, et al. Tumor-targeted 4-1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy. Sci Transl Med. 2019 Jun 12;11(496):eaav5989. PubMed PMID: 31189721; PubMed Central PMCID: PMCPMC7181714. doi:10.1126/scitranslmed.aav5989
  • Huang Y, Yu J, Lanzi A, et al. Engineered Bispecific Antibodies with Exquisite HIV-1-Neutralizing Activity. Cell. 2016 Jun 16;165(7):1621–31. PubMed PMID: 27315479; PubMed Central PMCID: PMCPMC4972332. doi:10.1016/j.cell.2016.05.024
  • Deak LC, Weber P, Seeber S, et al. editors. A novel bispecific checkpoint inhibitor antibody to preferentially block PD-1 and LAG-3 on dysfunctional TILs whilst sparing Treg activation. In: JOURNAL FOR IMMUNOTHERAPY OF CANCER. ENGLAND: BMC CAMPUS, 4 CRINAN ST, LONDON N1 9XW; 2019.
  • Nicolini VG, Waldhauer I, Freimoser-Grundschober A, et al. Abstract LB-389: combination of TYRP1-TCB, a novel T cell bispecific antibody for the treatment of melanoma, with immunomodulatory agents. Cancer Research. 2020;80(16Supplement):LB-389-LB-389. doi:10.1158/1538-7445.am2020-lb-389.
  • Augsberger C, Hanel G, Xu W, et al. Targeting intracellular WT1 in AML with a novel RMF-peptide-MHC specific T-cell bispecific antibody. Blood. 2021 Jul 19 [ PubMed PMID: 34280257]. doi:10.1182/blood.2020010477.
  • Sum E, Rapp M, Frobel P, et al. Fibroblast activation protein alpha-targeted CD40 agonism abrogates systemic toxicity and enables administration of high doses to induce effective antitumor immunity. Clin Cancer Res. 2021 Mar 26;27(14):4036–53. PubMed PMID: 33771854. doi:10.1158/1078-0432.CCR-20-4001
  • Chung AS, Lee J, Ferrara N. Targeting the tumour vasculature: insights from physiological angiogenesis. Nat Rev Cancer. 2010 Jul;10(7):505–14. PubMed PMID: 20574450. doi:10.1038/nrc2868.
  • Ferrara N, Adamis AP. Ten years of anti-vascular endothelial growth factor therapy. Nat Rev Drug Discov. 2016 Jun;15(6):385–403. PubMed PMID: 26775688. doi:10.1038/nrd.2015.17.
  • Parmar D, Apte M. Angiopoietin inhibitors: a review on targeting tumor angiogenesis. Eur J Pharmacol. 2021 May 15;899:174021. doi:10.1016/j.ejphar.2021.174021. PubMed PMID: 33741382.
  • Kloepper J, Riedemann L, Amoozgar Z, et al. Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival. Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):4476–81. PubMed PMID: 27044098; PubMed Central PMCID: PMCPMC4843473. doi:10.1073/pnas.1525360113
  • Baker LCJ, Boult JKR, Thomas M, et al. Acute tumour response to a bispecific Ang-2-VEGF-A antibody: insights from multiparametric MRI and gene expression profiling. Br J Cancer. 2016 Sep 6;115(6):691–702. PubMed PMID: 27529514; PubMed Central PMCID: PMCPMC5023775. doi:10.1038/bjc.2016.236
  • Solecki G, Osswald M, Weber D, et al. Differential effects of ang-2/VEGF-A inhibiting antibodies in combination with radio- or chemotherapy in glioma. Cancers (Basel). 2019 Mar 6;11(3): 10.3390/cancers11030314. PubMed PMID: 30845704; PubMed Central PMCID: PMCPMC6468722.
  • Mueller T, Freystein J, Lucas H, et al. Efficacy of a bispecific antibody co-targeting VEGFA and Ang-2 in combination with chemotherapy in a chemoresistant colorectal carcinoma xenograft model. Molecules. 2019 Aug 7;24(16): 10.3390/molecules24162865. PubMed PMID: 31394786; PubMed Central PMCID: PMCPMC6719918.
  • Schmittnaegel M, Rigamonti N, Kadioglu E, et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci Transl Med. 2017 Apr 12;9(385): 10.1126/scitranslmed.aak9670. PubMed PMID: 28404865.
  • Killock D. Immunotherapy: combine and conquer - antiangiogenic immunotherapy. Nat Rev Clin Oncol. 2017 Jun;14(6):327. PubMed PMID: 28466876. doi:10.1038/nrclinonc.2017.65.
  • Schmittnaegel M, De Palma M. Reprogramming tumor blood vessels for enhancing immunotherapy. Trends Cancer. 2017 Dec;3(12):809–12. doi:10.1016/j.trecan.2017.10.002. PubMed PMID: 29198436.
  • Kashyap AS, Schmittnaegel M, Rigamonti N, et al. Optimized antiangiogenic reprogramming of the tumor microenvironment potentiates CD40 immunotherapy. Proc Natl Acad Sci U S A. 2020 Jan 7;117(1):541–51. PubMed PMID: 31889004; PubMed Central PMCID: PMCPMC6955310. doi:10.1073/pnas.1902145116
  • Ragusa S, Prat-Luri B, Gonzalez-Loyola A, et al. Antiangiogenic immunotherapy suppresses desmoplastic and chemoresistant intestinal tumors in mice. J Clin Invest. 2020 Mar 2;130(3):1199–216. PubMed PMID: 32015230; PubMed Central PMCID: PMCPMC7269598. doi:10.1172/JCI129558
  • Hidalgo M, Martinez-Garcia M, Le Tourneau C, et al. First-in-human phase i study of single-agent vanucizumab, a first-in-class bispecific anti-angiopoietin-2/Anti-VEGF-A antibody, in adult patients with advanced solid tumors. Clin Cancer Res. 2018 Apr 1;24(7):1536–45. PubMed PMID: 29217526. doi:10.1158/1078-0432.CCR-17-1588
  • Heil F, Babitzki G, Julien-Laferriere A, et al. Vanucizumab mode of action: serial biomarkers in plasma, tumor, and skin-wound-healing biopsies. Transl Oncol. 2021 Feb;14(2):100984. 10.1016/j.tranon.2020.100984: PubMed PMID: 33338877; PubMed Central PMCID: PMCPMC7749407
  • Bendell JC, Sauri T, Gracian AC, et al. The McCAVE Trial: vanucizumab plus mFOLFOX-6 Versus Bevacizumab plus mFOLFOX-6 in patients with previously untreated metastatic colorectal carcinoma (mCRC). Oncologist. 2020 Mar;25(3):e451–e459. 10.1634/theoncologist.2019-0291: PubMed PMID: 32162804; PubMed Central PMCID: PMCPMC7066709
  • Hauschildt J, Schrimpf C, Thamm K, et al. Dual Pharmacological Inhibition of Angiopoietin-2 and VEGF-A in murine experimental sepsis. J Vasc Res. 2020;57(1):34–45. PubMed PMID: 31726451. doi:10.1159/000503787.
  • Zhou R, Wang S, Wen H, et al. The bispecific antibody HB-32, blockade of both VEGF and DLL4 shows potent anti-angiogenic activity in vitro and anti-tumor activity in breast cancer xenograft models. Exp Cell Res. 2019 Jul 15;380(2):141–48. PubMed PMID: 31034805. doi:10.1016/j.yexcr.2019.04.025
  • Gschwind A, Fischer OM, Ullrich A. The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer. 2004 May;4(5):361–70. doi:10.1038/nrc1360. PubMed PMID: 15122207.
  • Zhang F, Zhang J, Liu M, et al. Combating HER2-overexpressing breast cancer through induction of calreticulin exposure by Tras-Permut CrossMab. Oncoimmunology. 2015 Mar;4(3):e994391. 10.4161/2162402X.2014.994391: PubMed PMID: 25949918; PubMed Central PMCID: PMCPMC4404837
  • Hu S, Fu W, Xu W, et al. Four-in-one antibodies have superior cancer inhibitory activity against EGFR, HER2, HER3, and VEGF through disruption of HER/MET crosstalk. Cancer Res. 2015 Jan 1;75(1):159–70. PubMed PMID: 25371409. doi:10.1158/0008-5472.CAN-14-1670
  • Hu S, Fu W, Li T, et al. Antagonism of EGFR and Notch limits resistance to EGFR inhibitors and radiation by decreasing tumor-initiating cell frequency. Sci Transl Med. 2017 Mar 8;9(380):eaag0339. PubMed PMID: 28275151. doi:10.1126/scitranslmed.aag0339
  • Fu W, Lei C, Yu Y, et al. EGFR/notch antagonists enhance the response to inhibitors of the PI3K-Akt pathway by decreasing tumor-initiating cell frequency. Clin Cancer Res. 2019 May 1;25(9):2835–47. PubMed PMID: 30670492. doi:10.1158/1078-0432.CCR-18-2732
  • Lim B, Greer Y, Lipkowitz S, et al. Novel Apoptosis-Inducing Agents for the Treatment of Cancer, a New Arsenal in the Toolbox. Cancers (Basel). 2019 Jul 31;11(8):1087. PubMed PMID: 31370269; PubMed Central PMCID: PMCPMC6721450. doi:10.3390/cancers11081087
  • Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020 Jul;17(7):395–417. PubMed PMID: 32203277; PubMed Central PMCID: PMCPMC8211386. doi:10.1038/s41571-020-0341-y.
  • Davidson S, Coles M, Thomas T, et al. Fibroblasts as immune regulators in infection, inflammation and cancer. Nat Rev Immunol. 2021 Apr 28 [ PubMed PMID: 33911232]. doi:10.1038/s41577-021-00540-z.
  • Kratochwil C, Flechsig P, Lindner T, et al. (68)Ga-FAPIPET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med. 2019 Jun;60(6):801–05. 10.2967/jnumed.119.227967: PubMed PMID: 30954939; PubMed Central PMCID: PMCPMC6581228
  • Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001 Feb 23;104(4):487–501. PubMed PMID: 11239407. doi:10.1016/s0092-8674(01)00237-9.
  • Labiano S, Roh V, Godfroid C, et al. CD40 agonist targeted to fibroblast activation protein alpha synergizes with radiotherapy in murine hpv-positive head and neck tumors. Clin Cancer Res. 2021 Apr 26;27(14):4054–65. PubMed PMID: 33903200. doi:10.1158/1078-0432.CCR-20-4717
  • Tung HY, Su YC, Chen BM, et al. Selective delivery of PEGylated compounds to tumor cells by anti-PEG hybrid antibodies. Mol Cancer Ther. 2015 Jun;14(6):1317–26. 10.1158/1535-7163.MCT-15-0151: PubMed PMID: 25852063
  • Herrera-Camacho I, Anaya-Ruiz M, Perez-Santos M, et al. Cancer immunotherapy using anti-TIM3/PD-1 bispecific antibody: a patent evaluation of EP3356411A1. Expert Opin Ther Pat. 2019 Aug;29(8):587–93. 10.1080/13543776.2019.1637422: PubMed PMID: 31241380
  • Cebada J, Flores A, Bandala C, et al. Bispecific anti-PD-1/LAG-3 antibodies for treatment of advanced or metastatic solid tumors: a patent evaluation of US2018326054. Expert Opin Ther Pat. 2020 Jul;30(7):487–94. 10.1080/13543776.2020.1767071: PubMed PMID: 32397849
  • Dougall WC, Roman Aguilera A, Smyth MJ. Dual targeting of RANKL and PD-1 with a bispecific antibody improves anti-tumor immunity. Clin Transl Immunology. 2019;8(10):e01081. doi:10.1002/cti2.1081. PubMed PMID: 31572609; PubMed Central PMCID: PMCPMC6763724
  • De Miguel M, Umana P, Gomes de Morais AL, et al. T-cell-engaging Therapy for Solid Tumors. Clin Cancer Res. 2021 Mar 15;27(6):1595–603. PubMed PMID: 33082210. doi:10.1158/1078-0432.CCR-20-2448
  • Singh A, Dees S, Grewal IS. Overcoming the challenges associated with CD3+ T-cell redirection in cancer. Br J Cancer. 2021 Mar;124(6):1037–48. PubMed PMID: 33469153; PubMed Central PMCID: PMCPMC7960983. doi:10.1038/s41416-020-01225-5.
  • Crawford A, Chiu D. Targeting solid tumors using CD3 bispecific antibodies. Mol Cancer Ther. 2021 May 27;20(8):1350–58. PubMed PMID: 34045228. doi:10.1158/1535-7163.MCT-21-0073.
  • Kaiser J. Forced into battle. Science. 2020 May 29;368(6494):930–33. PubMed PMID: 32467373. doi:10.1126/science.368.6494.930.
  • Wu Z, Cheung NV. T cell engaging bispecific antibody (T-BsAb): from technology to therapeutics. Pharmacol Ther. 2018 Feb;182:161–75 . PubMed PMID: 28834699; PubMed Central PMCID: PMCPMC5785550. doi:10.1016/j.pharmthera.2017.08.005.
  • Bacac M, Klein C, CEA TCB: UP. A novel head-to-tail 2:1 T cell bispecific antibody for treatment of CEA-positive solid tumors. Oncoimmunology. 2016 Aug 5;5(8):e1203498. PubMed PMID: 27622073; PubMed Central PMCID: PMCPMC5007959. doi:10.1080/2162402X.2016.1203498.
  • Schlothauer T, Herter S, Koller CF, et al. Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions. Protein Eng Des Sel. 2016 Oct;29(10):457–66. 10.1093/protein/gzw040: PubMed PMID: 27578889
  • Lehmann S, Perera R, Grimm HP, et al. In Vivo Fluorescence Imaging of the Activity of CEA TCB, a novel T-cell bispecific antibody, reveals highly specific tumor targeting and fast induction of T-cell-mediated tumor killing. Clin Cancer Res. 2016 Sep 1;22(17):4417–27. PubMed PMID: 27117182. doi:10.1158/1078-0432.CCR-15-2622
  • Van De Vyver AJ, Weinzierl T, Eigenmann MJ, et al. Predicting tumor killing and T-cell activation by T-cell bispecific antibodies as a function of target expression: combining in vitro experiments with systems modeling. Mol Cancer Ther. 2021 Feb;20(2):357–66. 10.1158/1535-7163.MCT-20-0269: PubMed PMID: 33298591
  • Gonzalez-Exposito R, Semiannikova M, Griffiths B, et al. CEA expression heterogeneity and plasticity confer resistance to the CEA-targeting bispecific immunotherapy antibody cibisatamab (CEA-TCB) in patient-derived colorectal cancer organoids. J Immunother Cancer. 2019 Apr 15;7(1):101. PubMed PMID: 30982469; PubMed Central PMCID: PMCPMC6463631. doi:10.1186/s40425-019-0575-3
  • Teijeira A, Etxeberria I, Ponz-Sarvise M, et al. Immunotherapy of cancer visualized by live microscopy: seeing is believing. Clin Cancer Res. 2016 Sep 1;22(17):4277–79. PubMed PMID: 27330056. doi:10.1158/1078-0432.CCR-16-1072
  • Sam J, Colombetti S, Fauti T, et al. Combination of T-cell bispecific antibodies With PD-L1 checkpoint inhibition elicits superior anti-tumor activity. Front Oncol. 2020;10:575737. PubMed PMID: 33330050; PubMed Central PMCID: PMCPMC7735156. doi:10.3389/fonc.2020.575737.
  • Dudal S, Hinton H, Giusti AM, et al. Application of a MABEL approach for a T-cell-bispecific monoclonal antibody: CEA TCB. J Immunother. 2016 Sep;39(7):279–89. 10.1097/CJI.0000000000000132: PubMed PMID: 27404941
  • Kamperschroer C, Shenton J, Lebrec H, et al. Summary of a workshop on preclinical and translational safety assessment of CD3 bispecifics. J Immunotoxicol. 2020 Dec;17(1):67–85. 10.1080/1547691X.2020.1729902: PubMed PMID: 32100588
  • Cremasco F, Menietti E, Speziale D, et al. Cross-linking of T cell to B cell lymphoma by the T cell bispecific antibody CD20-TCB induces IFNgamma/CXCL10-dependent peripheral T cell recruitment in humanized murine model. PLoS One. 2021;16(1):e0241091. PubMed PMID: 33406104; PubMed Central PMCID: PMCPMC7787458 and SC declare ownership of Roche stocks. MP, PU, MB, CK, SC, JS are inventors on patent applications related to the CD20-TCB. This affiliation and patent participation do not alter our adherence to PLOS ONE policies on sharing data and materials. doi:10.1371/journal.pone.0241091.
  • Prakash A, Diefenbach CS. Immunity War: a Novel Therapy for Lymphoma Using T-cell Bispecific Antibodies. Clin Cancer Res. 2018 Oct 1;24(19):4631–32. PubMed PMID: 29884742. doi:10.1158/1078-0432.CCR-18-1363.
  • Hutchings M, Morschhauser F, Iacoboni G, et al. Glofitamab, a novel, bivalent CD20-Targeting T-cell-engaging bispecific antibody, induces durable complete remissions in relapsed or refractory B-cell lymphoma: a phase I trial. J Clin Oncol. 2021 Jun 20;39(18):1959–70. PubMed PMID: 33739857; PubMed Central PMCID: PMCPMC8210975. doi:10.1200/JCO.20.03175
  • Killock D. Engaging results with glofitamab. Nat Rev Clin Oncol. 2021 May;18(5):257. PubMed PMID: 33828233. doi:10.1038/s41571-021-00510-3.
  • Minson A, Glofitamab DM. CD20-TCB bispecific antibody. Leuk Lymphoma. 2021 Jul 15. 1–11. PubMed PMID: 34263696. doi:10.1080/10428194.2021.1953016.
  • Liddy N, Bossi G, Adams KJ, et al. Monoclonal TCR-redirected tumor cell killing. Nat Med. 2012 Jun;18(6):980–87. 10.1038/nm.2764: PubMed PMID: 22561687
  • Arenas EJ, Martinez-Sabadell A, Rius Ruiz I, et al. Acquired cancer cell resistance to T cell bispecific antibodies and CAR T targeting HER2 through JAK2 down-modulation. Nat Commun. 2021 Feb 23;12(1):1237. PubMed PMID: 33623012; PubMed Central PMCID: PMCPMC7902842. doi:10.1038/s41467-021-21445-4
  • Loo Yau H, Bell E, Ettayebi I, et al. DNA hypomethylating agents increase activation and cytolytic activity of CD8(+) T cells. Mol Cell. 2021 Apr 1;81(7):1469–1483e8. PubMed PMID: 33609448. doi:10.1016/j.molcel.2021.01.038
  • Rius Ruiz I, Vicario R, Morancho B, et al. p95HER2-T cell bispecific antibody for breast cancer treatment. Sci Transl Med. 2018 Oct 3;10(461):eaat1445. PubMed PMID: 30282693; PubMed Central PMCID: PMCPMC6498439. doi:10.1126/scitranslmed.aat1445
  • Geiger M, Stubenrauch KG, Sam J, et al. Protease-activation using anti-idiotypic masks enables tumor specificity of a folate receptor 1-T cell bispecific antibody. Nat Commun. 2020 Jun 24;11(1):3196. PubMed PMID: 32581215; PubMed Central PMCID: PMCPMC7314773. doi:10.1038/s41467-020-16838-w
  • Leclercq G, Haegel H, Schneider A, et al. Src/lck inhibitor dasatinib reversibly switches off cytokine release and T cell cytotoxicity following stimulation with T cell bispecific antibodies. J Immunother Cancer. 2021 Jul 9;9(7):e002582. PubMed PMID: 34326166. doi:10.1136/jitc-2021-002582
  • Karches CH, Benmebarek MR, Schmidbauer ML, et al. Bispecific antibodies enable synthetic agonistic receptor-transduced t cells for tumor immunotherapy. Clin Cancer Res. 2019 Oct 1;25(19):5890–900. PubMed PMID: 31285373. doi:10.1158/1078-0432.CCR-18-3927
  • Darowski D, Kobold S, Jost C, et al. Combining the best of two worlds: highly flexible chimeric antigen receptor adaptor molecules (CAR-adaptors) for the recruitment of chimeric antigen receptor T cells. MAbs. 2019;11(4):621–31. PubMed PMID: 30892136; PubMed Central PMCID: PMCPMC6601549. doi:10.1080/19420862.2019.1596511. May/Jun.
  • Kobold S, Steffen J, Chaloupka M, et al. Selective bispecific T cell recruiting antibody and antitumor activity of adoptive T cell transfer. J Natl Cancer Inst 2015 Jan;107(1):364. 10.1093/jnci/dju364: PubMed PMID: 25424197
  • Griessinger CM, Olafsen T, Mascioni A, et al. The PET-tracer (89) Zr-Df-IAB22M2CEnables monitoring of intratumoral CD8 T-cell infiltrates in tumor-bearing humanized mice after t-cell bispecific antibody treatment. Cancer Res. 2020 Jul 1;80(13):2903–13. PubMed PMID: 32409308. doi:10.1158/0008-5472.CAN-19-3269
  • Villanueva MT. Building on bispecifics. Nat Rev Drug Discov. 2019 Jul;18(8):582. PubMed PMID: 31367057. doi:10.1038/d41573-019-00117-5.
  • Trub M, Uhlenbrock F, Claus C, et al. Fibroblast activation protein-targeted-4-1BB ligand agonist amplifies effector functions of intratumoral T cells in human cancer. J Immunother Cancer. 2020 Jul;8(2):e000238. 10.1136/jitc-2019-000238: PubMed PMID: 32616554; PubMed Central PMCID: PMCPMC7333869
  • Gauthier L, Morel A, Anceriz N, et al. Multifunctional natural killer cell engagers targeting NKp46 trigger protective tumor immunity. Cell. 2019 Jun 13;177(7):1701–1713e16. PubMed PMID: 31155232. doi:10.1016/j.cell.2019.04.041
  • Zhao L, Xie F, Tong X, et al. Combating non-Hodgkin lymphoma by targeting both CD20 and HLA-DR through CD20-243 CrossMab. MAbs. 2014 May-Jun;6(3):740–48. 10.4161/mabs.28613: PubMed PMID: 24670986; PubMed Central PMCID: PMCPMC4011918
  • Rajendran S, Li Y, Ngoh E, et al. Development of a bispecific antibody targeting CD30 and CD137 on hodgkin and reed-sternberg cells. Front Oncol. 2019;9:945. PubMed PMID: 31616638; PubMed Central PMCID: PMCPMC6768943. doi:10.3389/fonc.2019.00945.
  • Du K, Li Y, Liu J, et al. A bispecific antibody targeting GPC3 and CD47 induced enhanced antitumor efficacy against dual antigen-expressing HCC. Mol Ther. 2021 Apr 7;29(4):1572–84. PubMed PMID: 33429083; PubMed Central PMCID: PMCPMC8058486. doi:10.1016/j.ymthe.2021.01.006
  • Zhao L, Tong Q, Qian W, et al. Eradication of non-Hodgkin lymphoma through the induction of tumor-specific T-cell immunity by CD20-Flex BiFP. Blood. 2013 Dec 19;122(26):4230–36. PubMed PMID: 24178967. doi:10.1182/blood-2013-04-496554
  • Panina AA, Rybchenko VS, Solopova ON, et al. Recombinant bispecific antibodies to the human erbb2 receptor and interferon-beta. Acta Naturae. 2020 Apr-Jun;12(2):95–104. 10.32607/actanaturae.10903: PubMed PMID: 32742732; PubMed Central PMCID: PMCPMC7385087
  • Montefiori DC. Bispecific Antibodies Against HIV. Cell. 2016 Jun 16;165(7):1563–64. PubMed PMID: 27315470. doi:10.1016/j.cell.2016.06.004.
  • Kingwell K. Infectious diseases: two-pronged attack on HIV. Nat Rev Immunol. 2016 Jul 27;16(8):465. PubMed PMID: 27461148. doi:10.1038/nri.2016.87.
  • Asokan M, Rudicell RS, Louder M, et al. Bispecific Antibodies Targeting Different Epitopes on the HIV-1 Envelope Exhibit Broad and Potent Neutralization. J Virol. 2015 Dec;89(24):12501–12. 10.1128/JVI.02097-15: PubMed PMID: 26446600; PubMed Central PMCID: PMCPMC4665248
  • Galimidi RP, Klein JS, Politzer MS, et al. Intra-spike crosslinking overcomes antibody evasion by HIV-1. Cell. 2015 Jan 29;160(3):433–46. PubMed PMID: 25635457; PubMed Central PMCID: PMCPMC4401576. doi:10.1016/j.cell.2015.01.016
  • Bournazos S, Gazumyan A, Seaman MS, et al. Bispecific Anti-HIV-1 antibodies with enhanced breadth and potency. Cell. 2016 Jun 16;165(7):1609–20. PubMed PMID: 27315478; PubMed Central PMCID: PMCPMC4970321. doi:10.1016/j.cell.2016.04.050
  • Khan SN, Sok D, Tran K, et al. Targeting the HIV-1 spike and coreceptor with bi- and trispecific antibodies for single-component broad inhibition of entry. J Virol. 2018 Sep 15;92(18): 10.1128/JVI.00384-18. PubMed PMID: 29976677; PubMed Central PMCID: PMCPMC6146690.
  • Moshoette T, Ali SA, Papathanasopoulos MA, et al. Engineering and characterising a novel, highly potent bispecific antibody iMab-CAP256 that targets HIV-1. Retrovirology. 2019 Nov 8;16(1):31. PubMed PMID: 31703699; PubMed Central PMCID: PMCPMC6842167. doi:10.1186/s12977-019-0493-y
  • Davis-Gardner ME, Alfant B, Weber JA, et al. A Bispecific Antibody That Simultaneously Recognizes the V2- and V3-Glycan Epitopes of the HIV-1 envelope glycoprotein is broader and more potent than its parental antibodies. mBio. 2020 Jan 14;11(1): 10.1128/mBio.03080-19. PubMed PMID: 31937648; PubMed Central PMCID: PMCPMC6960291.
  • Guttman M, Padte NN, Huang Y, et al. The influence of proline isomerization on potency and stability of anti-HIV antibody 10E8. Sci Rep. 2020 Aug 31;10(1):14313. PubMed PMID: 32868832; PubMed Central PMCID: PMCPMC7458915. doi:10.1038/s41598-020-71184-7
  • Wagh K, Seaman MS, Zingg M, et al. Potential of conventional & bispecific broadly neutralizing antibodies for prevention of HIV-1 subtype A, C & D infections. PLoS Pathog. 2018 Mar;14(3):e1006860. 10.1371/journal.ppat.1006860: PubMed PMID: 29505593; PubMed Central PMCID: PMCPMC5854441
  • Padte NN, Yu J, Huang Y, et al. Engineering multi-specific antibodies against HIV-1. Retrovirology. 2018 Aug 29;15(1):60. PubMed PMID: 30157871; PubMed Central PMCID: PMCPMC6114543. doi:10.1186/s12977-018-0439-9
  • Wang J, Bardelli M, Espinosa DA, et al. A human bi-specific antibody against zika virus with high therapeutic potential. Cell. 2017 Sep 21;171(1):229–241e15. PubMed PMID: 28938115; PubMed Central PMCID: PMCPMC5673489. doi:10.1016/j.cell.2017.09.002
  • De Gasparo R, Pedotti M, Simonelli L, et al. Bispecific IgG neutralizes SARS-CoV-2 variants and prevents escape in mice. Nature. 2021 May;593(7859):424–28. 10.1038/s41586-021-03461-y: PubMed PMID: 33767445
  • Jette CA, Cohen AA, Gnanapragasam PNP, et al. Broad cross-reactivity across sarbecoviruses exhibited by a subset of COVID-19 donor-derived neutralizing antibodies. bioRxiv. 2021 Apr 26 [ PubMed PMID: 33948592; PubMed Central PMCID: PMCPMC8095199]. doi:10.1101/2021.04.23.441195.
  • Taylor PC, Williams RO. Combination cytokine blockade: the way forward in therapy for rheumatoid arthritis? Arthritis Rheumatol. 2015 Jan;67(1):14–16. PubMed PMID: 25302944. doi:10.1002/art.38893.
  • Buckland J. Rheumatoid arthritis: anti-TNF and anti-IL-17 antibodies–better together! Nat Rev Rheumatol. 2014 Dec;10(12):699. PubMed PMID: 25348041. doi:10.1038/nrrheum.2014.183.
  • Fischer JA, Hueber AJ, Wilson S, et al. Combined inhibition of tumor necrosis factor alpha and interleukin-17 as a therapeutic opportunity in rheumatoid arthritis: development and characterization of a novel bispecific antibody. Arthritis Rheumatol. 2015 Jan;67(1):51–62. 10.1002/art.38896: PubMed PMID: 25303306
  • Xu T, Ying T, Wang L, et al. A native-like bispecific antibody suppresses the inflammatory cytokine response by simultaneously neutralizing tumor necrosis factor-alpha and interleukin-17A. Oncotarget. 2017 Oct 10;8(47):81860–72. PubMed PMID: 29137228; PubMed Central PMCID: PMCPMC5669854. doi:10.18632/oncotarget.19899
  • Heier JS, Singh RP, Wykoff CC, et al. The angiopoietin/tie pathway in retinal vascular diseases: a Review. Retina. 2021 Jan 1;41(1):1–19. PubMed PMID: 33136975. doi:10.1097/IAE.0000000000003003
  • Hussain RM, Neiweem AE, Kansara V, et al. Tie-2/Angiopoietin pathway modulation as a therapeutic strategy for retinal disease. Expert Opin Investig Drugs. 2019 Oct;28(10):861–69. 10.1080/13543784.2019.1667333: PubMed PMID: 31513439
  • Fleckenstein M, Keenan TDL, Guymer RH, et al. Age-related macular degeneration. Nat Rev Dis Primers. 2021 May 6;7(1):31. PubMed PMID: 33958600. doi:10.1038/s41572-021-00265-2
  • Hussain RM, Shaukat BA, Ciulla LM, et al. Vascular endothelial growth factor antagonists: promising players in the treatment of neovascular age-related macular degeneration. Drug Des Devel Ther. 2021;15:2653–65. PubMed PMID: 34188445; PubMed Central PMCID: PMCPMC8232378. doi:10.2147/DDDT.S295223.
  • Sharma A, Kumar N, Kuppermann BD, et al. Faricimab: expanding horizon beyond VEGF. Eye (Lond). 2020 May;34(5):802–04. 10.1038/s41433-019-0670-1: PubMed PMID: 31695160; PubMed Central PMCID: PMCPMC7182558
  • Jakubiak P, Alvarez-Sanchez R, Fueth M, et al. Ocular pharmacokinetics of intravitreally injected protein therapeutics: comparison among standard-of-care formats. Mol Pharm. 2021 Jun 7;18(6):2208–17. PubMed PMID: 34014104. doi:10.1021/acs.molpharmaceut.0c01218
  • Joussen AM, Ricci F, Paris LP, et al. Angiopoietin/Tie2 signalling and its role in retinal and choroidal vascular diseases: a review of preclinical data. Eye (Lond). 2021 May;35(5):1305–16. 10.1038/s41433-020-01377-x: PubMed PMID: 33564135; PubMed Central PMCID: PMCPMC8182896
  • Nicolo M, Ferro Desideri L, Vagge A, et al. Faricimab: an investigational agent targeting the Tie-2/angiopoietin pathway and VEGF-A for the treatment of retinal diseases. Expert Opin Investig Drugs. 2021 Mar;30(3):193–200. 10.1080/13543784.2021.1879791: PubMed PMID: 33471572
  • Foxton RH, Uhles S, Gruner S, et al. Efficacy of simultaneous VEGF-A/ANG-2 neutralization in suppressing spontaneous choroidal neovascularization. EMBO Mol Med. 2019 May;11(5): 10.15252/emmm.201810204. PubMed PMID: 31040126; PubMed Central PMCID: PMCPMC6505683.
  • Wolf A, Langmann T. Anti-VEGF-A/ANG2 combotherapy limits pathological angiogenesis in the eye: a replication study. EMBO Mol Med. 2019 May;11(5): 10.15252/emmm.201910362. PubMed PMID: 31040129; PubMed Central PMCID: PMCPMC6505573.
  • Chakravarthy U, Bailey C, Brown D, et al. Phase I trial of anti-vascular endothelial growth factor/anti-angiopoietin 2 bispecific antibody rg7716 for neovascular age-related macular degeneration. Ophthalmol Retina. 2017 Nov - Dec;1(6):474–85. 10.1016/j.oret.2017.03.003: PubMed PMID: 31047438
  • Sahni J, Patel SS, Dugel PU, et al. Simultaneous inhibition of angiopoietin-2 and vascular endothelial growth factor-a with faricimab in diabetic macular edema: BOULEVARD phase 2 Randomized Trial. Ophthalmology. 2019 Aug;126(8):1155–70. 10.1016/j.ophtha.2019.03.023: PubMed PMID: 30905643
  • Sahni J, Dugel PU, Patel SS, et al. Safety and efficacy of different doses and regimens of faricimab vs ranibizumab in neovascular age-related macular degeneration: the avenue phase 2 randomized clinical trial. JAMA Ophthalmol. 2020 Sep 1;138(9):955–63. PubMed PMID: 32729888; PubMed Central PMCID: PMCPMC7393587. doi:10.1001/jamaophthalmol.2020.2685
  • Khanani AM, Patel SS, Ferrone PJ, et al. Efficacy of every four monthly and quarterly dosing of faricimab vs ranibizumab in neovascular age-related macular degeneration: the stairway phase 2 randomized clinical trial. JAMA Ophthalmol. 2020 Sep 1;138(9):964–72. PubMed PMID: 32729897; PubMed Central PMCID: PMCPMC7489851. doi:10.1001/jamaophthalmol.2020.2699
  • De La Huerta I, Kim SJ, Sternberg P Jr. Faricimab combination therapy for sustained efficacy in neovascular age-related macular degeneration. JAMA Ophthalmol. 2020 Sep 1;138(9):972–73. PubMed PMID: 32729885. doi:10.1001/jamaophthalmol.2020.2723.
  • Sharma A, Kumar N, Parachuri N, et al. Faricimab: two in the bush is proving better than one in the hand? Ocul Immunol Inflamm. 2021 Jul;9:1–3. doi:10.1080/09273948.2021.1931350. PubMed PMID: 34242102.
  • Terstappen GC, Meyer AH, Bell RD, et al. Strategies for delivering therapeutics across the blood-brain barrier. Nat Rev Drug Discov. 2021 May;20(5):362–83. 10.1038/s41573-021-00139-y: . PubMed PMID: 33649582
  • Bohrmann B, Baumann K, Benz J, et al. Gantenerumab: a novel human anti-Abeta antibody demonstrates sustained cerebral amyloid-beta binding and elicits cell-mediated removal of human amyloid-beta. J Alzheimers Dis. 2012;28(1):49–69. PubMed PMID: 21955818. doi:10.3233/JAD-2011-110977.
  • Joshi KK, Phung W, Han G, et al. Elucidating heavy/light chain pairing preferences to facilitate the assembly of bispecific IgG in single cells. MAbs. 2019 Oct;11(7):1254–65. 10.1080/19420862.2019.1640549: PubMed PMID: 31286843; PubMed Central PMCID: PMCPMC6748609
  • Gong D, Riley TP, Bzymek KP, et al. Rational selection of building blocks for the assembly of bispecific antibodies. MAbs. 2021 Jan-Dec;13(1):1870058. 10.1080/19420862.2020.1870058: PubMed PMID: 33397191; PubMed Central PMCID: PMCPMC7808324
  • Tustian AD, Endicott C, Adams B, et al. Development of purification processes for fully human bispecific antibodies based upon modification of protein A binding avidity. MAbs. 2016 May-Jun;8(4):828–38. 10.1080/19420862.2016.1160192: PubMed PMID: 26963837; PubMed Central PMCID: PMCPMC4966828
  • Bogen JP, Carrara SC, Fiebig D, et al. Expeditious generation of biparatopic common light chain antibodies via chicken immunization and yeast display screening. Front Immunol. 2020;11:606878. PubMed PMID: 33424853; PubMed Central PMCID: PMCPMC7786285. doi:10.3389/fimmu.2020.606878.
  • Bogen JP, Carrara SC, Fiebig D, et al. Design of a Trispecific Checkpoint Inhibitor And Natural Killer Cell Engager Based On A 2 + 1 Common Light Chain Antibody Architecture. Front Immunol. 2021;12:669496. PubMed PMID: 34040611; PubMed Central PMCID: PMCPMC8141644. doi:10.3389/fimmu.2021.669496.
  • Bogen JP, Storka J, Yanakieva D, et al. Isolation of common light chain antibodies from immunized chickens using yeast biopanning and fluorescence-activated cell sorting. Biotechnol J. 2021 Mar;16(3):e2000240. 10.1002/biot.202000240: PubMed PMID: 32914549
  • Chiu D, Tavare R, Haber L, et al. A PSMA-Targeting CD3 Bispecific Antibody Induces Antitumor Responses that Are Enhanced by 4-1BB Costimulation. Cancer Immunol Res. 2020 May;8(5):596–608. 10.1158/2326-6066.CIR-19-0518: PubMed PMID: 32184296
  • Crawford A, Haber L, Kelly MP, et al. A Mucin 16 bispecific T cell-engaging antibody for the treatment of ovarian cancer. Sci Transl Med. 2019 Jun 19;11(497): 10.1126/scitranslmed.aau7534. PubMed PMID: 31217340.
  • Skokos D, Waite JC, Haber L, et al. A class of costimulatory CD28-bispecific antibodies that enhance the antitumor activity of CD3-bispecific antibodies. Sci Transl Med. 2020 Jan 8;12:525. 10.1126/scitranslmed.aaw7888: PubMed PMID: 31915305
  • Waite JC, Wang B, Haber L, et al. Tumor-targeted CD28 bispecific antibodies enhance the antitumor efficacy of PD-1 immunotherapy. Sci Transl Med. 2020 Jun 24;12(549): 10.1126/scitranslmed.aba2325. PubMed PMID: 32581132.
  • Geuijen C, Tacken P, Wang LC, et al. A human CD137xPD-L1 bispecific antibody promotes anti-tumor immunity via context-dependent T cell costimulation and checkpoint blockade. Nat Commun. 2021 Jul 21;12(1):4445. PubMed PMID: 34290245. doi:10.1038/s41467-021-24767-5
  • Geuijen CAW, De Nardis C, Maussang D, et al. Unbiased combinatorial screening identifies a bispecific igg1 that potently inhibits her3 signaling via her2-guided ligand blockade. Cancer Cell. 2018 May 14;33(5):922–936e10. PubMed PMID: 29763625. doi:10.1016/j.ccell.2018.04.003
  • Van Loo PF, Hangalapura BN, Thordardottir S, et al. MCLA-117, a CLEC12AxCD3 bispecific antibody targeting a leukaemic stem cell antigen, induces T cell-mediated AML blast lysis. Expert Opin Biol Ther. 2019 Jul;19(7):721–33. 10.1080/14712598.2019.1623200: PubMed PMID: 31286786
  • Shiraiwa H, Narita A, Kamata-Sakurai M, et al. Engineering a bispecific antibody with a common light chain: identification and optimization of an anti-CD3 epsilon and anti-GPC3 bispecific antibody, ERY974. Methods. 2019 Feb 1;154:10–20. 10.1016/j.ymeth.2018.10.005: PubMed PMID: 30326272
  • Bonisch M, Sellmann C, Maresch D, et al. Novel CH1: cLinterfaces that enhance correct light chain pairing in heterodimeric bispecific antibodies. Protein Eng Des Sel. 2017 Sep 1;30(9):685–96. PubMed PMID: 28981885; PubMed Central PMCID: PMCPMC5914326. doi:10.1093/protein/gzx044
  • Dillon M, Yin Y, Zhou J, et al. Efficient production of bispecific IgG of different isotypes and species of origin in single mammalian cells. MAbs. 2017;9(2):213–30. PubMed PMID: 27929752; PubMed Central PMCID: PMCPMC5297516. doi:10.1080/19420862.2016.1267089. Feb/Mar.