5,733
Views
7
CrossRef citations to date
0
Altmetric
Report

Versatile and rapid microfluidics-assisted antibody discovery

, , , , &
Article: 1978130 | Received 11 May 2021, Accepted 03 Sep 2021, Published online: 29 Sep 2021

References

  • Carbonetti S, Oliver BG, Vigdorovich V, Dambrauskas N, Sack B, Bergl E, Kappe SHI, Sather DN. A method for the isolation and characterization of functional murine monoclonal antibodies by single B cell cloning. J Immunol Methods. 2017;448:66–11. doi:10.1016/j.jim.2017.05.010.
  • Zhang D, Jiang F, Zaynagetdinov R, Huang H, Vd S, Wang H, Zhao X, MH J, Ji Q, Wang Y, et al. Identification and characterization of M6903, an antagonistic anti–TIM-3 monoclonal antibody. Oncoimmunology. 2020;9. https://www.tandfonline.com/action/journalInformation?journalCode=koni20.
  • Frenzel A, Schirrmann T, Hust M. Phage display-derived human antibodies in clinical development and therapy. MAbs. 2016;8:1177–94. https://www.tandfonline.com/action/journalInformation?journalCode=kmab20
  • Krah S, Grzeschik J, Rosowski S, Gaa R, Willenbuecher I, Demir D, Toleikis L, Kolmar H, Becker S, Zielonka S. A streamlined approach for the construction of large yeast surface display fab antibody libraries. In: Methods in molecular biology. 2018;1827145–61. doi:10.1007/978-1-4939-8648-4_8.
  • Dyson MR, Masters E, Pazeraitis D, Perera RL, Syrjanen JL, Surade S, Thorsteinson N, Parthiban K, Jones PC, Sattar M, et al. Beyond affinity: selection of antibody variants with optimal biophysical properties and reduced immunogenicity from mammalian display libraries. MAbs. 2020;12:1829335. https://www.tandfonline.com/action/journalInformation?journalCode=kmab20
  • Ministro J, Manuel AM, Goncalves J. Therapeutic antibody engineering and selection strategies. Advances in Biochemical Engineering/Biotechnology. 2020;171:55–86.
  • Minter RR, Sandercock AM, Rust SJ. Phenotypic screening—the fast track to novel antibody discovery. Drug Discov Today Technol. 2017;23:83–90. doi:10.1016/j.ddtec.2017.03.004.
  • Matuła K, Rivello F, Huck WTS. Single-cell analysis using droplet microfluidics. Adv Biosyst. 2020;4(1):e1900188.
  • Mathur L, Ballinger M, Utharala RMC. Microfluidics as an enabling technology for personalized cancer therapy. Small. 2020;16:e1904321. doi:10.1002/smll.201904321.
  • Eyer K, Doineau RCL, Castrillon CE, Briseño-Roa L, Menrath V, Mottet G, England P, Godina A, Brient-Litzler E, Nizak C, et al. Single-cell deep phenotyping of IgG-secreting cells for high-resolution immune monitoring. Nat Biotechnol. 2017;35:977–82. http://doi.org/10.1038/nbt.3964.
  • Brower KK, Khariton M, Suzuki PH, Still C, Kim G, Calhoun SGK, Qi LS, Wang B, Fordyce PM. Double emulsion picoreactors for high-throughput single-cell encapsulation and phenotyping via FACS. Anal Chem. 2020;92:13262–70. doi:10.1021/acs.analchem.0c02499.
  • Shembekar N, Hu H, Eustace D, CA M. Single-Cell Droplet Microfluidic Screening for Antibodies Specifically Binding to Target Cells. Cell Rep. 2018;22:2206–15. doi:10.1016/j.celrep.2018.01.071.
  • Fitzgerald V, Leonard P. Single cell screening approaches for antibody discovery. Methods. 2017;116:34–42. doi:10.1016/j.ymeth.2016.11.006.
  • Seah YFS, Hu H, Merten CA. Microfluidic single-cell technology in immunology and antibody screening. Mol Aspects Med. 2018;59:47–61. doi:10.1016/j.mam.2017.09.004.
  • Mazutis L, Gilbert J, Ung WL, Weitz DA, Griffiths AD, Heyman JA. Single-cell analysis and sorting using droplet-based microfluidics. Nat Protoc. 2013;8:870–91. doi:10.1038/nprot.2013.046.
  • Winters A, McFadden K, Bergen J, Landas J, Ka B, Gonzalez A, Salimi-Moosavi H, Cm M, Tagari P, Ct K. Rapid single B cell antibody discovery using nanopens and structured light. MAbs. 2019;11:1025–35. doi:10.1080/19420862.2019.1624126.
  • Fitzgerald V, Manning B, O’Donnell B, O’Reilly B, O’Sullivan D, O’Kennedy R, Leonard P. Exploiting highly ordered subnanoliter volume microcapillaries as microtools for the analysis of antibody producing cells. Anal Chem. 2015;87:997–1003. https://pubs.acs.org/sharingguidelines.
  • Jones BE, Brown-Augsburger PL, Corbett KS, Westendorf K, Davies J, Cujec TP, Wiethoff CM, Blackbourne JL, Heinz BA, Foster D, et al. LY-CoV555, a rapidly isolated potent neutralizing antibody, provides protection in a non-human primate model of SARS-CoV-2 infection. bioRxiv Prepr Serv Biol. 2020. doi:10.1101/2020.09.30.318972.
  • Lim S, Chen B, Kariolis MS, Dimov IK, Baer TM, Cochran JR. Engineering high affinity protein-protein interactions using a high-throughput microcapillary array platform. ACS Chem Biol. 2017;12:336–41. https://pubs.acs.org/sharingguidelines.
  • Gérard A, Woolfe A, Mottet G, Reichen M, Castrillon C, Menrath V, Ellouze S, Poitou A, Doineau R, Briseno-Roa L, et al. High-throughput single-cell activity-based screening and sequencing of antibodies using droplet microfluidics. Nat Biotechnol. 2020;38:715–21. doi:10.1038/s41587-020-0466-7.
  • Rogers TF, Zhao F, Huang D, Beutler N, Burns A, He WT, Limbo O, Smith C, Song G, Woehl J, et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science (80-). 2020 [cited 2020 Sep 17]; 369:956–63. http://science.sciencemag.org/.
  • Renn A, Fu Y, Hu X, Hall MD, Simeonov A. Fruitful neutralizing antibody pipeline brings hope to defeat SARS-Cov-2. Trends Pharmacol Sci. 2020:1–15. doi:10.1016/j.tips.2020.07.004.
  • Yanakieva D, Elter A, Bratsch J, Friedrich K, Becker S, Kolmar H. FACS-based functional protein screening via microfluidic co-encapsulation of yeast secretor and mammalian reporter cells. Sci Rep. 2020;10:1–13. doi:10.1038/s41598-020-66927-5.
  • Tanno H, McDaniel JR, Stevens CA, Voss WN, Li J, Durrett R, Lee J, Gollihar J, Tanno Y, Delidakis G, et al. A facile technology for the high-throughput sequencing of the paired VH:VL and TCRβ:TCRα repertoires. Sci Adv. 2020 Apr 22;6(17):eaay9093. doi:10.1126/sciadv.aay9093
  • Rajan S, Kierny MR, Mercer A, Wu J, Tovchigrechko A, Wu H, Dallacqua WF, Xiao X, Chowdhury PS. Recombinant human B cell repertoires enable screening for rare, specific, and natively paired antibodies. Commun Biol. 2018;1:1–8. doi:10.1038/s42003-017-0006-2.
  • Zhai J, Yi S, Jia Y, Pi M, Rp M. Cell-based drug screening on microfluidics. TrAC - Trends Anal Chem. 2019;117:231–41. https://doi.org/10.1016/j.trac.2019.05.018.
  • Segaliny AI, Li G, Kong L, Ren C, Chen X, Wang JK, Baltimore D, Wu G, Zhao W. Functional TCR T cell screening using single-cell droplet microfluidics. Lab Chip. 2018 Dec 4;18(24):3733–3749. doi:10.1039/c8lc00818c
  • Wang Y, Jin R, Shen B, Li N, Zhou H, Wang W, Zhao Y, Huang M, Fang P, Wang S, et al. High-throughput functional screening for next-generation cancer immunotherapy using droplet-based microfluidics. 2021. http://advances.sciencemag.org/
  • Wippold JA, Wang H, Tingling J, Leibowitz JL, de Figueiredo P, Han A. PRESCIENT: platform for the rapid evaluation of antibody success using integrated microfluidics enabled technology. Lab Chip. 2020;20:1628–38. doi:10.1039/C9LC01165J.
  • Wang B, Dekosky BJ, Timm MR, Lee J, Normandin E, Misasi J, Kong R, McDaniel JR, Delidakis G, Leigh KE, et al. Functional interrogation and mining of natively paired human v H:V L antibody repertoires. Nat Biotechnol. 2018;36:152–55. doi:10.1038/nbt.4052.
  • Bounab Y, Eyer K, Dixneuf S, Rybczynska M, Chauvel C, Mistretta M, Tran T, Aymerich N, Chenon G, Llitjos JF, et al. Dynamic single-cell phenotyping of immune cells using the microfluidic platform DropMap. Nat Protoc. 2020;15:2920–55. doi:10.1038/s41596-020-0354-0.
  • Asensio Ma, Lim YW, Wayham N, Stadtmiller K, Edgar RC, Leong J, Leong R, Mizrahi RA, Adams MS, Simons JF, et al. Antibody repertoire analysis of mouse immunization protocols using microfluidics and molecular genomics. MAbs. 2019;11:870–83. doi:10.1080/19420862.2019.1583995.
  • Josephides D, Davoli S, Whitley W, Ruis R, Salter R, Gokkaya S, Vallet M, Matthews D, Benazzi G, Shvets E, et al. Cyto-Mine: An Integrated, Picodroplet System for High-Throughput Single-Cell Analysis, Sorting, Dispensing, and Monoclonality Assurance. SLAS Technol. 2020 Apr;25(2):177–189. doi:10.1177/2472630319892571
  • Corti D, Lanzavecchia A. Efficient Methods To Isolate Human Monoclonal Antibodies from Memory B Cells and Plasma Cells. Microbiol Spectr. 2014 Oct;2(5). doi:10.1128/microbiolspec.AID-0018-2014
  • McDaniel JR, Ippolito GC, Georgiou G. Mapping the secrets of the antibody pool. Nat Biotechnol. 2017;35:921–22. doi:10.1038/nbt.3972.
  • Ding R, K-c H, Mitra A, Lw U, Lightwood D, Tu R, Starkie D, Cai L, Mazutis L, Chong S, et al. Rapid isolation of antigen-specific B-cells using droplet microfluidics. RSC Adv. 2020;10:27006–13. doi:10.1039/D0RA04328A.
  • Fang Y, Chu TH, Ackerman ME, Griswold KE. Going native: direct high throughput screening of secreted full-length IgG antibodies against cell membrane proteins. MAbs. 2017;9:1253–61. doi:10.1080/19420862.2017.1381812.
  • O’Sullivan D, Dowling P, Joyce H, Mcauley E, Mccann A, Henry M, Mcgovern B, Barham P, FC K, Murphy J, et al. A novel inhibitory anti-invasive MAb isolated using phenotypic screening highlights AnxA6 as a functionally relevant target protein in pancreatic cancer. Br J Cancer. 2017;117:1326–35. www.bjcancer.com
  • Ljungars A, Mårtensson L, Mattsson J, Kovacek M, Sundberg A, Tornberg U-C, Jansson B, Persson N, Emruli VK, Ek S, et al. A platform for phenotypic discovery of therapeutic antibodies and targets applied on Chronic Lymphocytic Leukemia. Npj Precis Oncol. 2018;2. www.nature.com/npjprecisiononcology
  • Swinney DC, Lee JA. Recent advances in phenotypic drug discovery. F1000Research. 2020;9:944. https://doi.org/10.12688/f1000research.25813.1.
  • Melidoni AN, Dyson MR, Mccafferty J. Selection of antibodies interfering with cell surface receptor signaling using embryonic stem cell differentiation. Methods Mol Biol. 2016;1341:111–32.
  • Han KH, Gonzalez-Quintial R, Peng Y, Baccala R, Theofilopoulos AN, Lerner RA. An agonist antibody that blocks autoimmunity by inducing anti-inflammatory macrophages. FASEB J Off Publ Fed Am Soc Exp Biol. 2016;30:738–47.
  • Zheng T, Xie J, Yang Z, Tao P, Shi B, Douthit L, Wu P, Lerner RA. Antibody selection using clonal cocultivation of Escherichia coli and eukaryotic cells in miniecosystems. www.pnas.org/cgi/doi/ 10.1073/pnas.1806718115
  • Robertson N, Lopez-Anton N, Gurjar SA, Khalique H, Khalaf Z, Clerkin S, Leydon VR, Parker-Manuel R, Raeside A, Payne T, et al. Development of a novel mammalian display system for selection of antibodies against membrane proteins. 2021;
  • Parthiban K, Perera RL, Sattar M, Huang Y, Mayle S, Masters E, Griffiths D, Surade S, Leah R, Dyson MR, et al. mAbs A comprehensive search of functional sequence space using large mammalian display libraries created by gene editing A comprehensive search of functional sequence space using large mammalian display libraries created by gene editing. 2019; https://www.tandfonline.com/action/journalInformation?journalCode=kmab20
  • Eyer K, Castrillon C, Chenon G, Bibette J, Bruhns P, Griffiths AD, Baudry J. The quantitative assessment of the secreted IgG repertoire after recall to evaluate the quality of immunizations. J Immunol. 2020;205:1176–84.
  • Fecher P, Caspell R, Naeem V, Karulin A, Kuerten S, Lehmann P. B cells and B cell blasts withstand cryopreservation while retaining their functionality for producing antibody. Cells. 2018;7:50. www.mdpi.com/journal/cells.
  • Convery N, Gadegaard N. 30 years of microfluidics. Micro and Nano Engineering. 2019;2:76–91
  • Hung ST, Mukherjee S, Jimenez R. Enrichment of rare events using a multi-parameter high throughput microfluidic droplet sorter. Lab Chip. 2020 Feb 21;20(4):834–843. doi:10.1039/c9lc00790c
  • Liu G, Zeng H, Mueller J, Carter B, Wang Z, Schilz J, Horny G, Birnbaum ME, Ewert S, Gifford DK. Antibody complementarity determining region design using high-capacity machine learning. Bioinformatics. 2020 Apr 1;36(7):2126–2133. doi:10.1093/bioinformatics/btz895