6,796
Views
13
CrossRef citations to date
0
Altmetric
Report

Rapid discovery of diverse neutralizing SARS-CoV-2 antibodies from large-scale synthetic phage libraries

, , , , , , , , , , , , , , , , , , , ORCID Icon, , & show all
Article: 2002236 | Received 04 Jul 2021, Accepted 01 Nov 2021, Published online: 30 Dec 2021

References

  • Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si H-R, Zhu Y, Li B, Huang C-L, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–17. [Internet]. doi:10.1038/s41586-020-2012-7.
  • Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, Hu Y, Tao Z-W, Tian J-H, Pei -Y-Y, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–69. [Internet]. doi:10.1038/s41586-020-2008-3.
  • Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al. A novel coronavirus from patients with pneumonia in china, 2019. N Engl J Med. 2020;382(8):727–33. [Internet]. doi:10.1056/NEJMoa2001017.
  • Dong E, Du H, Gardner L. A n interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis. 2020;20(5):533–34. [Internet]. doi:10.1016/S1473-3099(20)30120-1.
  • Piyush R, Rajarshi K, Khan R, Ray S. Convalescent plasma therapy: a promising coronavirus disease 2019 treatment strategy. Open Biol. 2020;10(9):200174. [Internet]. doi:10.1098/rsob.200174.
  • Tanne JH. Covid-19: FDA approves use of convalescent plasma to treat critically ill patients. BMJ. 2020;368:m1256. [Internet]. doi:10.1136/bmj.m1256.
  • Sullivan HC, Roback JD. Convalescent plasma: therapeutic hope or hopeless strategy in the SARS-CoV-2 pandemic. Transfus Med Rev. 2020;34(3):145–50. [Internet]. doi:10.1016/j.tmrv.2020.04.001.
  • Focosi D, Anderson AO, Tang JW, Tuccori M. Convalescent plasma therapy for COVID-19: state of the art. Clin Microbiol Rev. 2020;33(4). [Internet]. doi:10.1128/CMR.00072-20.
  • Wang QQ, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen K-Y-Y, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 2020;181(4):1–11. [Internet]. doi:10.1016/j.cell.2020.03.045.
  • Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N-H-H, Nitsche A, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8. [Internet]. doi:10.1016/j.cell.2020.02.052.
  • Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (80-). 2020;367(6485):1444–48. [Internet]. doi:10.1126/science.abb2762.
  • Liu L, Wang P, Nair MS, Yu J, Rapp M, Wang Q, Luo Y, Chan JF-W, Sahi V, Figueroa A, et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature. 2020;584(7821):450–56. [Internet]. doi:10.1038/s41586-020-2571-7.
  • Huo J, Zhao Y, Ren J, Zhou D, Duyvesteyn HME, Ginn HM, Carrique L, Malinauskas T, Ruza RR, Shah PNM, et al. Neutralization of SARS-CoV-2 by destruction of the prefusion spike. Cell Host Microbe. 2020;28(3):445–454.e6. [Internet]. doi:10.1016/j.chom.2020.06.010.
  • Rogers TF, Zhao F, Huang D, Beutler N, Burns A, He W, Limbo O, Smith C, Song G, Woehl J, et al. Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science (80-). 2020;369(6506):956–63. [Internet]. doi:10.1126/science.abc7520.
  • Zost SJ, Gilchuk P, Chen RE, Case JB, Reidy JX, Trivette A, Nargi RS, Sutton RE, Suryadevara N, Chen EC, et al. Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nat Med. 2020;26(9):1422–27. [Internet]. doi:10.1038/s41591-020-0998-x.
  • Chi X, Yan R, Zhang JJ, Zhang G, Zhang Y, Hao M, Zhang Z, Fan P, Dong Y, Yang Y, et al. A neutralizing human antibody binds to the N-terminal domain of the spike protein of SARS-CoV-2. Science (80-). 2020;369(6504):650–55. [Internet]. doi:10.1126/science.abc6952.
  • Brouwer PJM, Caniels TG, van der Straten K, Snitselaar JL, Aldon Y, Bangaru S, Torres JL, Okba NMA, Claireaux M, Kerster G, et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science (80-). 2020;369(6504):643–50. [Internet]. doi:10.1126/science.abc5902.
  • McCallum M, De Marco A, Lempp FA, Tortorici MA, Pinto D, Walls AC, Beltramello M, Chen A, Liu Z, Zatta F, et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell. 2021;184(9):2332–2347.e16. [Internet]. doi:10.1016/j.cell.2021.03.028.
  • Wu Y, Jiang S, Ying T. Single-domain antibodies as therapeutics against human viral diseases. Front Immunol. 2017;8:1802. [Internet]. doi:10.3389/fimmu.2017.01802.
  • Respaud R, Vecellio L, Diot P, Heuzé-Vourc’h N. Nebulization as a delivery method for mAbs in respiratory diseases. Expert Opin Drug Deliv. 2015;12(6):1027–39. [Internet]. doi:10.1517/17425247.2015.999039.
  • Esparza TJ, Martin NP, Anderson GP, Goldman ER, Brody DL. High affinity nanobodies block SARS-CoV-2 spike receptor binding domain interaction with human angiotensin converting enzyme. Sci Rep. 2020;10(1):22370. [Internet]. doi:10.1038/s41598-020-79036-0.
  • Cortez-Retamozo V, Lauwereys M, Hassanzadeh Gh G, Gobert M, Conrath K, Muyldermans S, De BP, Revets H. Efficient tumor targeting by single-domain antibody fragments of camels. Int J Cancer. 2002;98(3):456–62. [Internet]. doi:10.1002/ijc.10212.
  • Ter Meulen J, Van Den Brink EN, Poon LLMM, Marissen WE, Leung CSWW, Cox F, Cheung CY, Bakker AQ, Bogaards JA, van Deventer E, et al. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med. 2006;3(7):e237. [Internet]. doi:10.1371/journal.pmed.0030237.
  • Shim H. Synthetic approach to the generation of antibody diversity. BMB Rep. 2015;48(9):489–94. [Internet]. doi:10.5483/BMBRep.2015.48.9.120.
  • Öling D, Lawenius L, Shaw W, Clark S, Kettleborough R, Ellis T, Larsson N, Wigglesworth M. Large scale synthetic site saturation GPCR libraries reveal novel mutations that alter glucose signaling. ACS Synth Biol. 2018;7(9):2317–21. [Internet]. doi:10.1021/acssynbio.8b00118.
  • Immuno precise announces data from preclinical study of TATX-03 POLYTopeTM monoclonal antibody cocktail candidate against COVID-19 [press release]. Accessed19 February 2021. Retrieved from https//www.businesswire.com/news/home/20210219005110/en/ImmunoPrecise-Announces-Data-from-Preclinical-Study-of-TATX-03-PolyTope%E2%84%A2-Monoclonal-Antibody-Cocktail-Candidate-Against-COVID-19.
  • Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47(W1):W636–W641. doi:10.1093/nar/gkz268.
  • Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W293–6. doi:10.1093/nar/gkab301.
  • Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450–54. [Internet]. doi:10.1038/nature02145.
  • Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y, Baum A, Diehl WE, Dauphin A, Carbone C, et al. Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell. 2020;183(3):739–751.e8. [Internet]. doi:10.1016/j.cell.2020.09.032.
  • Brocato RL, Principe LM, Kim RK, Zeng X, Williams JA, Liu Y, Li R, Smith JM, Golden JW, Gangemi D, et al. Disruption of adaptive immunity enhances disease in SARS-CoV-2-infected syrian hamsters. J Virol. 2020;94(22):1–13. [Internet]. doi:10.1128/JVI.01683-20.
  • Tostanoski LH, Wegmann F, Martinot AJ, Loos C, McMahan K, Mercado NB, Yu J, Chan CN, Bondoc S, Starke CE, et al. Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters. Nat Med. 2020;26(11):1694–700. [Internet]. doi:10.1038/s41591-020-1070-6.
  • Mucker EM, Wollen-Roberts SE, Kimmel A, Shamblin J, Sampey D, Hooper JW, Geisbert T. Intranasal monkeypox marmoset model: prophylactic antibody treatment provides benefit against severe monkeypox virus disease. PLoS Negl Trop Dis [Internet]. 2018;12(6):e0006581. doi:10.1371/journal.pntd.0006581.
  • Marovich M, Mascola JR, Cohen MS. monoclonal antibodies for prevention and treatment of COVID-19. JAMA. 2020;324(2):131. [Internet]. doi:10.1001/jama.2020.10245.
  • Zost SJ, Gilchuk P, Case JB, Binshtein E, Chen RE, Nkolola JP, Schäfer A, Reidy JX, Trivette A, Nargi RS, et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature. 2020;584(7821):443–49. [Internet]. doi:10.1038/s41586-020-2548-6.
  • Lou Y, Zhao W, Wei H, Chu M, Chao R, Yao H, Su J, Li Y, Li X, Cao Y, et al. Cross‐neutralization of RBD mutant strains of SARS‐CoV‐2 by convalescent patient derived antibodies. Biotechnol J. 2021;16(11):2100207. [Internet]. doi:10.1002/biot.202100207.
  • Parray HA, Chiranjivi AK, Asthana S, Yadav N, Shrivastava T, Mani S, Sharma C, Vishwakarma P, Das S, Pindari K, et al. Identification of an anti–SARS–CoV-2 receptor-binding domain–directed human monoclonal antibody from a naïve semisynthetic library. J Biol Chem. 2020;295(36):12814–21. [Internet]. doi:10.1074/jbc.AC120.014918.
  • Wu Y, Li C, Xia S, Tian X, Kong Y, Wang Z, Gu C, Zhang R, Tu C, Xie Y, et al. Identification of human single-domain antibodies against SARS-CoV-2. Cell Host Microbe. 2020;27(6):891–898.e5. [Internet]. doi:10.1016/j.chom.2020.04.023.
  • Hastie KM, Li H, Bedinger D, Schendel SL, Dennison SM, Li K, Rayaprolu V, Yu X, Mann C, Zandonatti M, et al. Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: a global consortium study. Science (80-). 2021;374(6566):472–78. [Internet]. doi:10.1126/science.abh2315.
  • Ke Z, Oton J, Qu K, Cortese M, Zila V, McKeane L, Nakane T, Zivanov J, Neufeldt CJ, Cerikan B, et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature. 2020;588(7838):498–502. [Internet]. doi:10.1038/s41586-020-2665-2.
  • Yuan M, Wu NC, Zhu X, Lee -C-C-CD, So RTYY, Lv H, Mok CKPP, Wilson IA. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science (80-). 2020;368(6491):630–33. [Internet]. doi:10.1126/science.abb7269.
  • Wrobel AG, Benton DJ, Hussain S, Harvey R, Martin SR, Roustan C, Rosenthal PB, Skehel JJ, Gamblin SJ. Antibody-mediated disruption of the SARS-CoV-2 spike glycoprotein. Nat Commun. 2020;11(1):5337. [Internet]. doi:10.1038/s41467-020-19146-5.
  • Piccoli L, Park Y-J, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M, Silacci-Fregni C, Pinto D, Rosen LE, Bowen JE, et al. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell. 2020;183(4):1024–1042.e21. [Internet]. doi:10.1016/j.cell.2020.09.037.
  • Lim SA, Gramespacher JA, Pance K, Rettko NJ, Solomon P, Jin J, Lui I, Elledge SK, Liu J, Bracken CJ, et al. Bispecific VH/Fab antibodies targeting neutralizing and non-neutralizing spike epitopes demonstrate enhanced potency against SARS-CoV-2. MAbs. 2021;13(1):1893426. [Internet]. doi:10.1080/19420862.2021.1893426.
  • Li D, Edwards RJ, Manne K, Martinez DR, Schäfer A, Alam SM, Wiehe K, Lu X, Parks R, Sutherland LL, et al. The functions of SARS-CoV-2 neutralizing and infection-enhancing antibodies in vitro and in mice and nonhuman primates. bioRxiv Prepr Serv Biol. [Internet] 2021; Available from. http://www.ncbi.nlm.nih.gov/pubmed/33442694%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC7805451
  • Liu H, Wu NC, Yuan M, Bangaru S, Torres JL, Caniels TG, van Schooten J, Zhu X, Lee -C-CD, Brouwer PJM, et al. Cross-neutralization of a SARS-CoV-2 antibody to a functionally conserved site is mediated by avidity. Immunity. 2020;53(6):1272–1280.e5. [Internet]. doi:10.1016/j.immuni.2020.10.023.
  • Seydoux E, Homad LJ, MacCamy AJ, Parks KR, Hurlburt NK, Jennewein MF, Akins NR, Stuart AB, Wan YH, Feng J, et al. Characterization of neutralizing antibodies from a SARS-CoV-2 infected individual. bioRxiv [Internet]. 2020. doi:10.1101/2020.05.12.091298.
  • Kreer C, Zehner M, Weber T, Ercanoglu MS, Gieselmann L, Rohde C, Halwe S, Korenkov M, Schommers P, Vanshylla K, et al. longitudinal isolation of potent near-germline SARS-CoV-2-neutralizing antibodies from COVID-19 patients. Cell. 2020;182(6):1663–73. [Internet]. doi:10.1016/j.cell.2020.08.046.
  • Cerutti G, Guo Y, Zhou T, Gorman J, Lee M, Rapp M, Reddem ER, Yu J, Bahna F, Bimela J, et al. Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host Microbe. 2021;29(5):819–833.e7. [Internet]. doi:10.1016/j.chom.2021.03.005.
  • Sharma HB, Panigrahi S, Sarmah AK, Dubey BK, Suryadevara N, Shrihari S, Gilchuk P, VanBlargan LA, Binshtein E, Zost SJ, et al. Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell. 2021;184(9):2316–2331.e15. [Internet]. doi:10.1016/j.cell.2021.03.029.
  • Chen RE, Zhang X, Case JB, Winkler ES, Liu Y, VanBlargan LA, Liu J, Errico JM, Xie X, Suryadevara N, et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat Med. 2021;27(4):717–26. [Internet]. doi:10.1038/s41591-021-01294-w.
  • Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, Wang M, Yu J, Zhang B, Kwong PD, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021;593(7857):130–35. [Internet]. doi:10.1038/s41586-021-03398-2.
  • Bertoglio F, Meier D, Langreder N, Steinke S, Rand U, Simonelli L, Heine Pa, Ballmann R, Schneider K-T, Roth KDR, et al. SARS-CoV-2 neutralizing human recombinant antibodies selected from pre-pandemic healthy donors binding at RBD-ACE2 interface. Nat Commun. 2021;12(1):1577. [Internet]. doi:10.1038/s41467-021-21609-2.
  • Chi X, Liu X, Wang C, Zhang X, Li X, Hou J, Ren L, Jin Q, Wang J, Yang W. Humanized single domain antibodies neutralize SARS-CoV-2 by targeting the spike receptor binding domain. Nat Commun. 2020;11(1):4528. [Internet]. doi:10.1038/s41467-020-18387-8.
  • Noy-Porat T, Makdasi E, Alcalay R, Mechaly A, Levy Y, Bercovich-Kinori A, Zauberman A, Tamir H, Yahalom-Ronen Y, Israeli M, et al. A panel of human neutralizing mAbs targeting SARS-CoV-2 spike at multiple epitopes. Nat Commun. 2020;11(1):4303. [Internet]. doi:10.1038/s41467-020-18159-4.
  • Rouet R, Dudgeon K, Christie M, Langley D, Christ D. Fully human vh single domains that rival the stability and cleft recognition of camelid antibodies. J Biol Chem. 2015;290(19):11905–17. [Internet]. doi:10.1074/jbc.M114.614842.
  • Hsieh C-L, Goldsmith JA, Schaub JM, DiVenere AM, Kuo H-C, Javanmardi K, Le KC, Wrapp D, Lee AG, Liu Y, et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science (80-). 2020;369(6510):1501–05. [Internet]. doi:10.1126/science.abd0826.
  • Davidson E, Doranz BJ. A high-throughput shotgun mutagenesis approach to mapping B-cell antibody epitopes. Immunology. 2014;143(1):13–20. [Internet]. doi:10.1111/imm.12323.
  • Lo Conte L, Chothia C, Janin J. The atomic structure of protein-protein recognition sites 1 1Edited by A. R. Fersht. J Mol Biol. 1999;285(5):2177–98. [Internet]. doi:10.1006/jmbi.1998.2439.
  • Bogan AA, Thorn KS. Anatomy of hot spots in protein interfaces. J Mol Biol. 1998;280(1):1–9. [Internet]. doi:10.1006/jmbi.1998.1843.
  • Ter Meulen J, Bakker ABH, Van Den Brink EN, Weverling GJ, Martina BEE, Haagmans BL, Kuiken T, De Kruif J, Preiser W, Spaan W, et al. Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. Lancet. 2004;363(9427):2139–41. doi:10.1016/S0140-6736(04)16506-9.