21,922
Views
45
CrossRef citations to date
0
Altmetric
Review

Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2008790 | Received 22 Aug 2021, Accepted 17 Nov 2021, Published online: 16 Mar 2022

References

  • Urquhart L. Top product forecasts for 2021 [Internet]. Nature Reviews Drug Discovery. 2021;20:10–35. doi:10.1038/d41573-020-00219-5.
  • Lu R-M, Hwang Y-C, Liu I-J, Lee -C-C, Tsai H-Z, Li H-J, Wu H-C. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27(1):1–30. doi:10.1186/s12929-019-0592-z.
  • Laustsen AH, Greiff V, Karatt-Vellatt A, Muyldermans S, Jenkins TP. Animal Immunization, in Vitro Display Technologies, and Machine Learning for Antibody Discovery [Internet]. Trends Biotechnol. 2021; 39:1263–73. doi:10.1016/j.tibtech.2021.03.003.
  • Narayanan H, Dingfelder F, Butté A, Lorenzen N, Sokolov M, Arosio P. Machine Learning for Biologics: Opportunities for Protein Engineering, Developability, and Formulation [Internet]. Trends Pharmacol Sci. 2021;42:151–65. doi:10.1016/j.tips.2020.12.004.
  • Norman RA, Ambrosetti F, Bonvin AMJJ, Colwell LJ, Kelm S, Kumar S, Krawczyk K. Computational approaches to therapeutic antibody design: established methods and emerging trends. Brief Bioinform. 2020;21:1549–67. doi:10.1093/bib/bbz095.
  • Leman JK, Weitzner BD, Lewis SM, Adolf-Bryfogle J, Alam N, Alford RF, Aprahamian M, Baker D, Barlow KA, Barth P, et al. Macromolecular modeling and design in Rosetta: recent methods and frameworks. Nat Methods. 2020;17:665–80.
  • Brown AJ, Snapkov I, Akbar R, Pavlović M, Miho E, Sandve GK, Greiff V. Augmenting adaptive immunity: progress and challenges in the quantitative engineering and analysis of adaptive immune receptor repertoires. Mol Syst Des Eng. 2019;4:701–36.
  • Sormanni P, Aprile FA, Vendruscolo M. Third generation antibody discovery methods in silico rational design. Chem Soc Rev. 2018;47(24):9137–57. doi:10.1039/C8CS00523K.
  • Riahi S, Lee JH, Wei S, Cost R, Masiero A, Prades C, Olfati-Saber R, Wendt M, Park A, Qiu Y, et al. Application of an integrated computational antibody engineering platform to design SARS-CoV-2 neutralizers [Internet]. bioRxiv2021 [cited 2021 Aug 12]; 2021.03.23.436613. https://www.biorxiv.org/content/10.1101/2021.03.23.436613v1
  • Liang T, Chen H, Yuan J, Jiang C, Hao Y, Wang Y, Feng Z, Xie X-Q. IsAb: a computational protocol for antibody design. Brief Bioinform [Internet]. 2021;22. doi:10.1093/bib/bbab143.
  • Hernandez I, Bott SW, Patel AS, Wolf CG, Hospodar AR, Sampathkumar S, Shrank WH. Pricing of monoclonal antibody therapies: higher if used for cancer? Am J Manag Care. 2018;24:109–12.
  • Graves J, Byerly J, Priego E, Makkapati N, Parish SV, Medellin B, Berrondo M. A review of deep learning methods for antibodies. Antibodies (Basel) [Internet]. 2020;9(2). http://dx.doi.org/10.3390/antib9020012
  • Bengio Y. Learning Deep Architectures for AI. Now Publishers Inc; 2009.
  • Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. In: Teh YW, Titterington M, editors. Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Chia Laguna Resort, Sardinia, Italy: PMLR; 2010. 249–56.
  • Greiff V, Yaari G, Cowell LG. Mining adaptive immune receptor repertoires for biological and clinical information using machine learning. Current Opinion in Systems Biology. 2020;24:109–19. doi:10.1016/j.coisb.2020.10.010.
  • Pertseva M, Gao B, Neumeier D, Yermanos A, Reddy ST. Applications of Machine and Deep Learning in Adaptive Immunity. [cited 2021 Apr 26]; https://www.annualreviews.org/doi/abs/10.1146/annurev-chembioeng-101420-125021
  • Jebara T. Machine Learning: Discriminative and Generative. Springer Science & Business Media; 2012.
  • Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, Ferrero E, Agapow P-M, Zietz M, Hoffman MM, et al. Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface [Internet]. 2018; 15. http://dx.doi.org/10.1098/rsif.2017.0387.
  • Ovchinnikov S, Huang P-S. Structure-based protein design with deep learning. Curr Opin Chem Biol. 2021;65:136–44. doi:10.1016/j.cbpa.2021.08.004.
  • Jespersen MC, Mahajan S, Peters B, Nielsen M, Marcatili P. Antibody Specific B-Cell Epitope Predictions: Leveraging Information From Antibody-Antigen Protein Complexes. Front Immunol. 2019;10:298. doi:10.3389/fimmu.2019.00298.
  • Deac A, Veličković P, Sormanni SP. Attentive Cross-Modal Paratope Prediction. J Comput Biol. 2019;26(6):536–45. doi:10.1089/cmb.2018.0175.
  • Datta-Mannan A, Thangaraju A, Leung D, Tang Y, Witcher DR, Lu J, Wroblewski VJ. Balancing charge in the complementarity-determining regions of humanized mAbs without affecting pI reduces non-specific binding and improves the pharmacokinetics. MAbs. 2015;7:483–93. doi:10.1080/19420862.2015.1016696.
  • Carter PJ, Lazar GA. Next generation antibody drugs: pursuit of the “high-hanging fruit.”. Nat Rev Drug Discov. 2018;17:197–223. doi:10.1038/nrd.2017.227.
  • Schoch A, Kettenberger H, Mundigl O, Winter G, Engert J, Heinrich J, Emrich T. Charge-mediated influence of the antibody variable domain on FcRn-dependent pharmacokinetics. Proc Natl Acad Sci U S A. 2015;112:5997–6002. doi:10.1073/pnas.1408766112.
  • Amimeur T, Shaver JM, Ketchem RR, Taylor JA. Designing feature-controlled humanoid antibody discovery libraries using generative adversarial networks. bioRxiv [Internet]. 2020; https://www.biorxiv.org/content/10.1101/2020.04.12.024844v2.abstract
  • Friedensohn S, Neumeier D, Khan TA, Csepregi L. Convergent selection in antibody repertoires is revealed by deep learning. bioRxiv [Internet]. 2020; https://www.biorxiv.org/content/10.1101/2020.02.25.965673v1.abstract
  • Akbar R, Robert PA, Weber CR, Widrich M, Frank R, Pavlović M, Scheffer L, Chernigovskaya M, Snapkov I, Slabodkin A, et al. In silico proof of principle of machine learning-based antibody design at unconstrained scale [Internet]. bioRxiv2021 [cited 2021 Jul 11]; 2021.07.08.451480. https://www.biorxiv.org/content/10.1101/2021.07.08.451480v1.abstract
  • Greiff V, Menzel U, Miho E, Weber C, Riedel R, Cook S, Valai A, Lopes T, Radbruch A, Winkler TH, et al. Systems Analysis Reveals High Genetic and Antigen-Driven Predetermination of Antibody Repertoires throughout B Cell Development. Cell Rep. 2017;19:1467–78. doi:10.1016/j.celrep.2017.04.054.
  • Elhanati Y, Sethna Z, Marcou Q, Jr CCG, Mora T, Walczak AM. Inferring processes underlying B-cell repertoire diversity. Philos Trans R Soc Lond B Biol Sci [Internet]. 2015;370. http://dx.doi.org/10.1098/rstb.2014.0243
  • Tress ML, Abascal F, Valencia A. Alternative Splicing May Not Be the Key to Proteome Complexity. Trends Biochem Sci. 2017;42:98–110. doi:10.1016/j.tibs.2016.08.008.
  • Galson JD, Pollard AJ, Trück J, Kelly DF. Studying the antibody repertoire after vaccination: practical applications. Trends Immunol. 2014;35(7):319–31. doi:10.1016/j.it.2014.04.005.
  • Raybould MIJ, Rees AR, Deane CM. Current strategies for detecting functional convergence across B-cell receptor repertoires. MAbs. 2021;13:1996732. doi:10.1080/19420862.2021.1996732.
  • Yang F, Nielsen SCA, Hoh RA, Röltgen K, Wirz OF, Haraguchi E, Jean GH, Lee J-Y, Pham TD, Jackson KJL, et al. Shared B cell memory to coronaviruses and other pathogens varies in human age groups and tissues. Science. 2021;372:738–41.
  • Trück J, Ramasamy MN, Galson JD, Rance R, Parkhill J, Lunter G, Pollard AJ, Kelly DF. Identification of antigen-specific B cell receptor sequences using public repertoire analysis. J Immunol. 2015;194(1):252–61. doi:10.4049/jimmunol.1401405.
  • Kanyavuz A, Marey-Jarossay A, Lacroix-Desmazes S, Dimitrov JD. Breaking the law: unconventional strategies for antibody diversification. Nat Rev Immunol. 2019;19(6):355–68. doi:10.1038/s41577-019-0126-7.
  • Pieper K, Tan J, Piccoli L, Foglierini M, Barbieri S, Chen Y, Silacci-Fregni C, Wolf T, Jarrossay D, Anderle M, et al. Public antibodies to malaria antigens generated by two LAIR1 insertion modalities. Nature. 2017;548:597–601. doi:10.1038/nature23670.
  • Tan J, Pieper K, Piccoli L, Abdi A, Perez MF, Geiger R, Tully CM, Jarrossay D, Maina Ndungu F, Wambua J, et al. A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens. Nature. 2016;529:105–09. doi:10.1038/nature16450.
  • Werner RG, Kopp K, Schlueter M. Glycosylation of therapeutic proteins in different production systems. Acta Paediatr. 2007;96:17–22. doi:10.1111/j.1651-2227.2007.00199.x.
  • Jennewein MF, Alter G. The Immunoregulatory Roles of Antibody Glycosylation. Trends Immunol. 2017;38:358–72. doi:10.1016/j.it.2017.02.004.
  • Choe H, Li W, Wright PL, Vasilieva N, Venturi M, Huang -C-C, Grundner C, Dorfman T, Zwick MB, Wang L, et al. Tyrosine sulfation of human antibodies contributes to recognition of the CCR5 binding region of HIV-1 gp120. Cell. 2003;114:161–70. doi:10.1016/S0092-8674(03)00508-7.
  • Chen Y, Doud E, Stone T, Xin L, Hong W, Li Y. Rapid global characterization of immunoglobulin G1 following oxidative stress. MAbs. 2019;11:1089–100. doi:10.1080/19420862.2019.1625676.
  • Schlothauer T, Rueger P, Stracke JO, Hertenberger H, Fingas F, Kling L, Emrich T, Drabner G, Seeber S, Auer J, et al. Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies. MAbs. 2013;5:576–86. doi:10.4161/mabs.24981.
  • Sela-Culang I, Kunik V, Ofran Y. The structural basis of antibody-antigen recognition. Front Immunol. 2013;4:302. doi:10.3389/fimmu.2013.00302.
  • Xu JL, Davis MM. Diversity in the CDR3 Region of VH Is Sufficient for Most Antibody Specificities. Immunity. 2000;13:37–45. doi:10.1016/S1074-7613(00)00006-6.
  • Akbar R, Robert PA, Pavlović M, Jeliazkov JR, Snapkov I, Slabodkin A, Weber CR, Scheffer L, Miho E, Haff IH, et al. A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding. Cell Rep. 2021;34:108856. doi:10.1016/j.celrep.2021.108856.
  • Wucherpfennig KW, Allen PM, Celada F, Cohen IR, Boer RD, Garcia KC, Goldstein B, Greenspan R, Hafler D, Hodgkin P, et al. Polyspecificity of T cell and B cell receptor recognition. Semin Immunol. 2007;19:216–24. doi:10.1016/j.smim.2007.02.012.
  • Barlow DJ, Edwards MS, Thornton JM. Continuous and discontinuous protein antigenic determinants. Nature. 1986;322:747–48. doi:10.1038/322747a0.
  • Kringelum JV, Nielsen M, Padkjær SB, Lund O. Structural analysis of B-cell epitopes in antibody: proteincomplexes. Mol Immunol. 2013;53:24–34. doi:10.1016/j.molimm.2012.06.001.
  • Guest JD, Vreven T, Zhou J, Moal I, Jeliazkov JR, Gray JJ, Weng Z, Pierce BG. An expanded benchmark for antibody-antigen docking and affinity prediction reveals insights into antibody recognition determinants. Structure [Internet]. 2021;doi:10.1016/j.str.2021.01.005.
  • Boughter CT, Borowska MT, Guthmiller JJ, Bendelac A, Wilson PC, Roux B, Adams EJ. Biochemical patterns of antibody polyreactivity revealed through a bioinformatics-based analysis of CDR loops. Elife [Internet]. 2020; 9. Available from. ;: http://dx.doi.org/10.7554/eLife.61393
  • Fernández-Quintero ML, Loeffler JR, Kraml J, Kahler U, Kamenik AS, Liedl KR. Characterizing the Diversity of the CDR-H3 Loop Conformational Ensembles in Relationship to Antibody Binding Properties. Front Immunol. 2018;9:3065. doi:10.3389/fimmu.2018.03065.
  • Jain T, Sun T, Durand S, Hall A, Houston NR, Nett JH, Sharkey B, Bobrowicz B, Caffry I, Yu Y, et al. Biophysical properties of the clinical-stage antibody landscape. Proc Natl Acad Sci U S A. 2017;114:944–49. doi:10.1073/pnas.1616408114.
  • Corrie BD, Marthandan N, Zimonja B, Jaglale J, Zhou Y, Barr E, Knoetze N, Breden FMW, Christley S, Scott JK, et al. iReceptor: A platform for querying and analyzing antibody/B-cell and T-cell receptor repertoire data across federated repositories. Immunol Rev. 2018;284:24–41. doi:10.1111/imr.12666.
  • Robert PA, Akbar R, Frank R, Pavlović M, Widrich M, Snapkov I, Chernigovskaya M, Scheffer L, Slabodkin A, Mehta BB, et al. One billion synthetic 3D-antibody-antigen complexes enable unconstrained machine-learning formalized investigation of antibody specificity prediction [Internet]. bioRxiv2021 [cited 2021 Jul 22]; 2021.07.06.451258. https://www.biorxiv.org/content/10.1101/2021.07.06.451258v2
  • Ferdous S, Martin ACR. AbDb: antibody structure database—a database of PDB-derived antibody structures. Database [Internet]. [cited 2021 Apr 20]; 2018. https://academic.oup.com/database/article-abstract/doi/10.1093/database/bay040/4989324.
  • Berman HM, Westbrook J, Feng Z, Westbrook J, Feng Z, Feng Z. The protein data bank. Nucleic acids [Internet]. 2000;28:235–42. doi:10.1093/nar/28.1.235.
  • Kovaltsuk A, Leem J, Kelm S, Snowden J, Deane CM, Krawczyk K. Observed antibody space: a resource for data mining next-generation sequencing of antibody repertoires. J Immunol. 2018;201:2502–09. doi:10.4049/jimmunol.1800708.
  • Rives A, Meier J, Sercu T, Goyal S, Lin Z, Liu J, Guo D, Ott M, Lawrence Zitnick C, Ma J, et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences. Proc Natl Acad Sci U S A [Internet]. 2021 [cited 2021 Jul 20];118. https://www.pnas.org/content/118/15/e2016239118.abstract
  • Ruffolo JA, Sulam J, Gray JJ. Antibody structure prediction using interpretable deep learning [Internet]. bioRxiv2021 [cited 2021 Jul 20]; 2021.05.27.445982. https://www.biorxiv.org/content/10.1101/2021.05.27.445982v3.abstract
  • Leem J, Dunbar J, Georges G, Shi J, Deane CM. ABodyBuilder: automated antibody structure prediction with data-driven accuracy estimation. MAbs. 2016;8:1259–68. doi:10.1080/19420862.2016.1205773.
  • Schritt D, Li S, Rozewicki J, Katoh K, Yamashita K, Volkmuth W, Cavet G, Standley DM. Repertoire Builder: high-throughput structural modeling of B and T cell receptors. Molecular Systems Design & Engineering. 2019;4:761–68. doi:10.1039/C9ME00020H.
  • Lapidoth G, Parker J, Prilusky J, Fleishman SJ, Valencia A. AbPredict 2: a server for accurate and unstrained structure prediction of antibody variable domains. Bioinformatics. 2019;35:1591–93. doi:10.1093/bioinformatics/bty822.
  • Kovaltsuk A, Raybould MIJ, Wong WK, Marks C, Kelm S, Snowden J, Trück J, Deane CM, Ofran Y. Structural diversity of B-cell receptor repertoires along the B-cell differentiation axis in humans and mice. PLoS Comput Biol. 2020;16:e1007636. doi:10.1371/journal.pcbi.1007636.
  • Glanville J, Ives S, J-p B, Pettus C, Peñate KR, Hovde R, Bayless N, Shanghavi D, Glanville K, Calgua E, et al. A general solution to broad-spectrum vaccine design for rapidly mutating viruses. 2020; https://www.researchsquare.com/article/rs-100459/latest.pdf
  • Ambrosetti F, Jiménez-García B, Roel-Touris J, Bonvin AMJJ. Modeling antibody-antigen complexes by information-driven docking. Structure. 2020;28(1):119–29.e2. doi:10.1016/j.str.2019.10.011.
  • Jeliazkov JR, Frick R, Zhou J, Gray JJ. Robustification of rosettaantibody and rosetta snugdock. PLoS One. 2021;16(3):e0234282. doi:10.1371/journal.pone.0234282.
  • Hua CK, Gacerez AT, Sentman CL, Ackerman ME, Choi Y, Bailey-Kellogg C. Computationally-driven identification of antibody epitopes. Elife [Internet]. 2017; 6. http://dx.doi.org/10.7554/eLife.29023
  • Waibl F, Fernández-Quintero ML, Kamenik AS, Kraml J, Hofer F, Kettenberger H, Georges G, Liedl KR. Conformational ensembles of antibodies determine their hydrophobicity. Biophys J. 2021;120(1):143–57. doi:10.1016/j.bpj.2020.11.010.
  • Fernández-Quintero M, Kroell K, Bacher L, Loeffler J, Quoika PK, Georges G, Bujotzek A, Kettenberger H, Liedl KR. Germline-dependent antibody paratope states and pairing specific VH-VL interface dynamics. Front Immunol. 2021;12:2741. doi:10.3389/fimmu.2021.675655.
  • Sirin S, Apgar JR, Bennett EM, Keating AE. AB-Bind: Antibody binding mutational database for computational affinity predictions: antibody-antigen affinity database and computational benchmarks. Protein Sci. 2016;25:393–409. doi:10.1002/pro.2829.
  • Lima WC, Gasteiger E, Marcatili P, Duek P, Bairoch A, The CP. ABCD database: a repository for chemically defined antibodies. Nucleic Acids Res. 2020;48:D261–4. doi:10.1093/nar/gkz714.
  • Swindells MB, Porter CT, Couch M, Hurst J, Abhinandan KR, Nielsen JH, Macindoe G, Hetherington J, Martin ACR. abYsis: Integrated Antibody Sequence and Structure-Management, Analysis, and Prediction. J Mol Biol. 2017;429:356–64. doi:10.1016/j.jmb.2016.08.019.
  • Kulkarni-Kale U, Raskar-Renuse S, Natekar-Kalantre G, Saxena SA. Antigen-antibody interaction database (AgAbDb): a compendium of antigen-antibody interactions. Methods Mol Biol. 2014;1184:149–64.
  • Eroshkin AM, LeBlanc A, Weekes D, Post K, Li Z, Rajput A, Butera ST, Burton DR, Godzik A. bNAber: database of broadly neutralizing HIV antibodies. Nucleic Acids Res. 2014;42:D1133–9. doi:10.1093/nar/gkt1083.
  • Guo Y, Chen K, Kwong PD, Shapiro L, Sheng Z. cAb-Rep: A Database of Curated Antibody Repertoires for Exploring Antibody Diversity and Predicting Antibody Prevalence. Front Immunol. 2019;10:2365. doi:10.3389/fimmu.2019.02365.
  • Raybould MIJ, Kovaltsuk A, Marks C, Deane CM, Wren J. CoV-AbDab: the coronavirus antibody database. Bioinformatics. 2021;37:734–35. doi:10.1093/bioinformatics/btaa739.
  • Mahajan S, Vita R, Shackelford D, Lane J, Schulten V, Zarebski L, Jespersen MC, Marcatili P, Nielsen M, Sette A, et al. Epitope Specific Antibodies and T Cell Receptors in the Immune Epitope Database. Front Immunol. 2018;9:2688. doi:10.3389/fimmu.2018.02688.
  • Lefranc M-P, Ehrenmann F, Kossida S, Giudicelli V, Duroux P. Use of IMGT® Databases and Tools for Antibody Engineering and Humanization. Methods Mol Biol. 2018;1827:35–69.
  • Jemimah S, Yugandhar K, Michael Gromiha M, Valencia A. PROXiMATE: a database of mutant protein–protein complex thermodynamics and kinetics. Bioinformatics. 2017;33(17):2787–88. doi:10.1093/bioinformatics/btx312.
  • Dunbar J, Krawczyk K, Leem J, Baker T, Fuchs A, Georges G, Shi J, Deane CM. SAbDab: the structural antibody database. Nucleic Acids Res. 2014;42(D1):D1140–6. doi:10.1093/nar/gkt1043.
  • Wang R, Fang X, Lu Y, Yang C-Y C-Y, Wang S. The PDBbind Database:  methodologies and Updates. J Med Chem. 2005;48(12):4111–19. doi:10.1021/jm048957q.
  • Wilton EE, Opyr MP, Kailasam S, Kothe RF, Wieden H-J. sdAb-DB: The Single Domain Antibody Database. ACS Synthetic Biology. 2018;7(11):2480–84. doi:10.1021/acssynbio.8b00407.
  • Jankauskaite J, Jiménez-García B, Dapkunas J, Fernández-Recio J, Moal IH, Xenarios I. SKEMPI 2.0: an updated benchmark of changes in protein–protein binding energy, kinetics and thermodynamics upon mutation. Bioinformatics. 2019;35(3):462–69. doi:10.1093/bioinformatics/bty635.
  • Mir S, Alhroub Y, Anyango S, Armstrong DR, Berrisford JM, Clark AR, Conroy MJ, Dana JM, Deshpande M, Gupta D, et al. PDBe: towards reusable data delivery infrastructure at protein data bank in Europe. Nucleic Acids Res. 2018;46(D1):D486–92. doi:10.1093/nar/gkx1070.
  • Raybould MIJ, Marks C, Lewis AP, Shi J, Bujotzek A, Taddese B, Deane CM. Thera-SAbDab: the therapeutic structural antibody database. Nucleic Acids Res. 2020;48(D1):D383–8. doi:10.1093/nar/gkz827.
  • Mason DM, Friedensohn S, Weber CR, Jordi C, Wagner B, Meng SM, Ehling RA, Bonati L, Dahinden J, Gainza P, et al. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning. [Internet]. Nature Biomedical Engineering2021; 10.1038/s41551-021-00699-9.
  • Karimi M, Wu D, Wang Z, Shen Y, Valencia A. DeepAffinity: interpretable deep learning of compound–protein affinity through unified recurrent and convolutional neural networks. Bioinformatics. 2019;35(18):3329–38. doi:10.1093/bioinformatics/btz111.
  • Sundararajan M, Taly A, Yan Q. Axiomatic attribution for deep networks [Internet]. arXiv [cs.LG]2017. http://arxiv.org/abs/1703.01365
  • Adebayo J, Gilmer J, Muelly M, Goodfellow I, Hardt M Kim B. Sanity Checks for Saliency Map [Internet]. arXiv [cs.CV]2018. http://arxiv.org/abs/1810.03292
  • Abdar M, Pourpanah F, Hussain S, Rezazadegan D, Liu L, Ghavamzadeh M, Fieguth P, Cao X, Khosravi A, Rajendra Acharya U, et al. A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges. arxiv [Internet]. 2021;https://arxiv.org/abs/2011.06225
  • Josse J, Prost N, Scornet E, Varoquaux G. On the consistency of supervised learning with missing values. 2019 [cited 2021 Aug 6]; Available from:
  • O’Leary DS. Medicine’s metaphysical morass: how confusion about dualism threatens public health. Synthese. 2020;1–32. doi:10.1007/s11229-020-02869-9.
  • Madani A, Krause B, Greene ER, Subramanian S, Mohr BP, Holton JM, Olmos JL, Xiong C, Sun ZZ, Socher R, et al. Deep neural language modeling enables functional protein generation across families. bioRxiv. 2021 07 18.452833.
  • Shin J-E, Riesselman AJ, Kollasch AW, McMahon C, Simon E, Sander C, Manglik A, Kruse AC, Marks DS. Protein design and variant prediction using autoregressive generative models. Nat Commun. 2021;12(1):2403. doi:10.1038/s41467-021-22732-w.
  • Brandes N, Ofer D, Peleg Y, Rappoport N, ProteinBERT: LM. A universal deep-learning model of protein sequence and function. bioRxiv. 2021 05 24.445464.
  • Wang Y, You Z-H, Yang S, Li X, Jiang T-H ZX, High Efficient A. Biological Language Model for Predicting Protein–Protein Interactions. Cells. 2019/2(8):122.
  • Alley EC, Khimulya G, Biswas S, AlQuraishi M, Church GM. Unified rational protein engineering with sequence-based deep representation learning. Nat Methods. 2019;16(12):1315–22. doi:10.1038/s41592-019-0598-1.
  • Ostrovsky-Berman M, Frankel B, Polak P, Yaari G. Immune2vec: Embedding B/T cell receptor sequences in RN using natural language processing. Front Immunol [Internet]. 2021; 12. https://www.frontiersin.org/articles/10.3389/fimmu.2021.680687/full
  • Ofer D, Brandes N, Linial M. The language of proteins: NLP, machine learning & protein sequences. Comput Struct Biotechnol J. 2021;19:1750–58. doi:10.1016/j.csbj.2021.03.022.
  • Leem J, Mitchell LS, Farmery JHR, Barton J, Galson JD. Deciphering the language of antibodies using self-supervised learning[Internet]. bioRxiv2021 [cited 2021 Nov 16]; 2021.11.10.468064. https://www.biorxiv.org/content/10.1101/2021.11.10.468064v1
  • Angluin D. Computational learning theory: survey and selected bibliography. In: Proceedings of the twenty-fourth annual ACM symposium on Theory of Computing. New York, NY, USA: Association for Computing Machinery; 1992. page 351–69.
  • Heinz J. Computational theories of learning and developmental psycholinguistics. In: Jl L, Snyder W, Pater J editors. The Oxford Handbook of Developmental Linguistics. Oxford University Press; p. 633–63. 2016.
  • Moll RN, Arbib MA, Kfoury AJ. An Introduction to Formal Language Theory. Springer Science & Business Media; 2012.
  • Kanduri C, Pavlović M, Scheffer L, Motwani K. Profiling the baseline performance and limits of machine learning models for adaptive immune receptor repertoire classification. bioRxiv [Internet]. 2021; https://www.biorxiv.org/content/10.1101/2021.05.23.445346v1.abstract
  • Weber CR, Akbar R, Yermanos A, Pavlović M, Snapkov I, Sandve GK, Reddy ST, Greiff V, Schwartz R. immuneSIM: tunable multi-feature simulation of B- and T-cell receptor repertoires for immunoinformatics benchmarking. Bioinformatics [Internet]. 2020;36(11):3594–96. doi:10.1093/bioinformatics/btaa158.
  • Pellequer JL, Westhof E. PREDITOP: a program for antigenicity prediction. J Mol Graph [Internet]. 1993 [cited 2021 Aug 12]; 11. https://pubmed.ncbi.nlm.nih.gov/7509182/.
  • Odorico M, Pellequer J-L. BEPITOPE: predicting the location of continuous epitopes and patterns in proteins. J Mol Recognit [Internet]. 2003 [cited 2021 Aug 12];16(1):20–22. doi:10.1002/jmr.602.
  • Saha S, Raghava GPS. BcePred: Prediction of Continuous B-Cell Epitopes in Antigenic Sequences Using Physico-chemical Properties. In: Artificial Immune Systems. Springer, Berlin, Heidelberg; 2004. p. 197–204.
  • Soria-Guerra RE, Nieto-Gomez R, Govea-Alonso DO, Rosales-Mendoza S. An overview of bioinformatics tools for epitope prediction: Implications on vaccine development. J Biomed Inform. 2015;53:405–14. doi:10.1016/j.jbi.2014.11.003.
  • El-Manzalawy Y, Honavar V. Recent advances in B-cell epitope prediction methods. Immunome Res. 2010;6(Suppl 2):S2. doi:10.1186/1745-7580-6-S2-S2.
  • Saha S, Raghava GP. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins [Internet]. 2006 [cited 2021 Aug 12];65. https://pubmed.ncbi.nlm.nih.gov/16894596/
  • Manavalan B, Govindaraj RG, Shin TH, Kim MO, Lee G. iBCE-EL: A new ensemble learning framework for improved linear b-cell epitope prediction. Front Immunol [Internet]. 2018 [cited 2021 Aug 16]; 10.3389/fimmu.2018.01695
  • Huang J, Honda W. CED: a conformational epitope database. BMC Immunol. 2006;7:1–8. doi:10.1186/1471-2172-7-7.
  • Söllner J, Mayer B. Machine Learning Approaches for Prediction of Linear B-cell Epitopes on Proteins. J Mol Recognit. 2006;19:200–08. doi:10.1002/jmr.771.
  • El-Manzalawy Y, Dobbs D, Honavar V. Predicting linear B-cell epitopes using string kernels. J Mol Recognit [Internet]. 2008 [cited 2021 Aug 13];21:243–55. doi:10.1002/jmr.893.
  • Gao J, Faraggi E, Zhou Y, Ruan J, Kurgan KL. BEST: Improved Prediction of B-Cell Epitopes from Antigen Sequences. PLoS One. 2012;7(6):e40104. doi:10.1371/journal.pone.0040104.
  • Liang S, Zheng D, Standley DM, Yao B, Zacharias M, Zhang C. EPSVR and EPMeta: prediction of antigenic epitopes using support vector regression and multiple server results. BMC Bioinformatics [Internet]. 2010 [cited 2021 Aug 6]; 11(1). 10.1186/1471-2105-11-381
  • Chen J, Liu H, Yang J, Chou K-C. Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids [Internet]. 2007 [cited 2021 Aug 13];33. (3):423–28. doi:10.1007/s00726-006-0485-9.
  • Ren J, Song J, Ellis J, Li J. Staged heterogeneity learning to identify conformational B-cell epitopes from antigen sequences. BMC Genomics. 2017;18(S2):1–13. doi:10.1186/s12864-017-3493-0.
  • Sun J, Wu D, Xu T, Wang X, Xu X, Tao L, Li YX, Cao ZW. SEPPA: a computational server for spatial epitope prediction of protein antigens. Nucleic Acids Res. 2009;37:W612–6. doi:10.1093/nar/gkp417.
  • Andersen PH, Nielsen M, Lund O. Prediction of residues in discontinuous B-cell epitopes using protein 3D structures. Protein Sci. 2006;15:2558. doi:10.1110/ps.062405906.
  • Sweredoski MJ, Baldi P. PEPITO: improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure. Bioinformatics [Internet] 2008 [cited 2021 Aug 6];24:1459–60. doi:10.1093/bioinformatics/btn199.
  • Ponomarenko J, Bui -H-H, Li W, Fusseder N, Bourne PE, Sette A, Peters B. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics [Internet]. 2008 [cited 2021 Aug 6];9(1). 10.1186/1471-2105-9-514
  • Lu S, Li Y, Nan X Zhang S. A Structure-based B-cell Epitope Prediction Model Through Combing Local and Global Features [Internet]. bioRxiv2021 [cited 2021 Aug 13]; 2021.07.13.452188. https://www.biorxiv.org/content/10.1101/2021.07.13.452188v1.abstract
  • Greenbaum JA, Andersen PH, Blythe M, Bui -H-H, Cachau RE, Crowe J, Davies M, Kolaskar AS, Lund O, Morrison S, et al. Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J Mol Recognit. 2007;20:75–82. doi:10.1002/jmr.815.
  • Blythe MJ, Flower DR. Benchmarking B cell epitope prediction: underperformance of existing methods. Protein Sci. 2005–1(14):246–48.
  • Sela-Culang I, Ofran Y, Peters B. Antibody specific epitope prediction—emergence of a new paradigm. Curr Opin Virol. 2015;11:98–102. doi:10.1016/j.coviro.2015.03.012.
  • Kunik V, Ofran Y. The indistinguishability of epitopes from protein surface is explained by the distinct binding preferences of each of the six antigen-binding loops. Protein Eng Des Sel [Internet]. 2013 [cited 2021 Aug 13];26:599–609. doi:10.1093/protein/gzt027.
  • Zhao L, Li J. Mining for the antibody-antigen interacting associations that predict the B cell epitopes. BMC Struct Biol [Internet]. 2010 [cited 2021 Aug 13];101:S6. doi:10.1186/1472-6807-10-S1-S6.
  • Krawczyk K, Liu X, Baker T, Shi J, Deane CM. Improving B-cell epitope prediction and its application to global antibody-antigen docking. Bioinformatics [Internet]. 2014 [cited 2021 Aug 6];30(16):2288–94. doi:10.1093/bioinformatics/btu190.
  • Schneider C, Buchanan A, Taddese B, Deane CM, Valencia A. DLAB: deep learning methods for structure-based virtual screening of antibodies. Bioinformatics [Internet]. 2021; https://www.biorxiv.org/content/10.1101/2021.02.12.430941v1.abstract
  • Leem J, Deane CM. High-Throughput Antibody Structure Modeling and Design Using ABodyBuilder [Internet]. Methods in Molecular Biology2019 367–80. 10.1007/978-1-4939-8736-8_21
  • Sela-Culang I, Ashkenazi S, Peters B, Ofran Y. PEASE: predicting B-cell epitopes utilizing antibody sequence. Bioinformatics. 2015;31(8):1313–15. doi:10.1093/bioinformatics/btu790.
  • Sela-Culang I, Benhnia MEI, Matho MH, Kaever T, Maybeno M, Schlossman A, Nimrod G, Li S, Xiang Y, Zajonc D, et al. Using a combined computational-experimental approach to predict antibody-specific B cell epitopes. Structure [Internet]. 2014 [cited 2021 Aug 13];22(4):646–57. doi:10.1016/j.str.2014.02.003.
  • Pittala S, Bailey-Kellogg C, Elofsson A. Learning context-aware structural representations to predict antigen and antibody binding interfaces. Bioinformatics. 2020;36(13):3996–4003. doi:10.1093/bioinformatics/btaa263.
  • Liberis E, Velickovic P, Sormanni P, Vendruscolo M, Liò P, Hancock J. Parapred: antibody paratope prediction using convolutional and recurrent neural networks. Bioinformatics. 2018;34(17):2944–50. doi:10.1093/bioinformatics/bty305.
  • Olimpieri PP, Chailyan A, Tramontano A, Marcatili P. Prediction of site-specific interactions in antibody-antigen complexes: the proABC method and server. Bioinformatics. 2013;29(18):2285–91. doi:10.1093/bioinformatics/btt369.
  • Ambrosetti F, Olsen TH, Olimpieri PP, Jiménez-García B, Milanetti E, Marcatilli P, Bonvin AMJJ, Ponty Y. proABC-2: PRediction of AntiBody contacts v2 and its application to information-driven docking. Bioinformatics. 2020;36(20):5107–08. doi:10.1093/bioinformatics/btaa644.
  • Galson JD, Trück J, Fowler A, Clutterbuck EA, Münz M, Cerundolo V, Reinhard C, van der Most R, Pollard AJ, Lunter G, et al. Analysis of B Cell Repertoire Dynamics Following Hepatitis B Vaccination in Humans, and Enrichment of Vaccine-specific Antibody Sequences. EBioMedicine. 2015;2(12):2070–79. doi:10.1016/j.ebiom.2015.11.034.
  • Richardson E, Galson JD, Kellam P, Kelly DF, Smith SE, Palser A, Watson S, Deane CM. A computational method for immune repertoire mining that identifies novel binders from different clonotypes, demonstrated by identifying anti-pertussis toxoid antibodies. MAbs. 2021;13(1):1869406. doi:10.1080/19420862.2020.1869406.
  • Nimrod G, Fischman S, Austin M, Herman A, Keyes F, Leiderman O, Hargreaves D, Strajbl M, Breed J, Klompus S, et al. Computational Design of Epitope-Specific Functional Antibodies. Cell Rep. 2018;25(8):2121–31.e5. doi:10.1016/j.celrep.2018.10.081.
  • Li X, Van Deventer JA, Hassoun HS, Ghersi D. ASAP-SML: An antibody sequence analysis pipeline using statistical testing and machine learning. PLoS Comput Biol. 2020;16(4):e1007779. doi:10.1371/journal.pcbi.1007779.
  • Kunik V, Ashkenazi S, Ofran Y. Paratome: an online tool for systematic identification of antigen-binding regions in antibodies based on sequence or structure. Nucleic Acids Res. 2012;40(W1):W521–4. doi:10.1093/nar/gks480.
  • Daberdaku S, Ferrari C, Valencia A. Antibody interface prediction with 3D Zernike descriptors and SVM. Bioinformatics. 2019;35(11):1870–76. doi:10.1093/bioinformatics/bty918.
  • Krawczyk K, Baker T, Shi J, Deane CM. Antibody i-Patch prediction of the antibody binding site improves rigid local antibody-antigen docking. Protein Eng Des Sel. 2013;26(10):621–29. doi:10.1093/protein/gzt043.
  • Meiler J, Zeidler A, Schmschke F, Mller M. Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks. Journal of Molecular Modeling. 2001;7(9):360–69. doi:10.1007/s008940100038.
  • Klausen MS, Jespersen MC, Nielsen H, Jensen KK, Jurtz VI, Sønderby CK, Sommer MOA, Winther O, Nielsen M, Petersen B, et al. NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning. Proteins: Structure, Function, and Bioinformatics [Internet]. 2019 [cited 2021 Aug 16]; 87. (6):520–27. doi:10.1002/prot.25674.
  • Chen R, Li L, Weng Z. ZDOCK: an initial-stage protein-docking algorithm. Proteins: Structure, Function, and Genetics. 2003;52(1):80–87. doi:10.1002/prot.10389.
  • Oh L, Dai B, Bailey-Kellogg C. A multi-resolution graph convolution network for contiguous epitope prediction. BCB 21: Proceedings of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health. 2021; 1–10.
  • Pierce BG, Hourai Y, Weng Z, Keskin O. Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS One. 2011;6(9):e24657. doi:10.1371/journal.pone.0024657.
  • Del Vecchio A, Deac A, Liò P, Veličković P. Neural message passing for joint paratope-epitope prediction [Internet]. arXiv [q-bio.QM]2021. http://arxiv.org/abs/2106.00757
  • Bronstein MM, Bruna J, Cohen T, Geometric Deep VP. Learning: Grids, Groups, Graphs, Geodesics, and Gauges [Internet]. arXiv [cs.LG]2021. http://arxiv.org/abs/2104.13478
  • Atz K, Grisoni F, Schneider G. Geometric Deep Learning on Molecular Representations [Internet]. arXiv [physics.chem-ph]2021. http://arxiv.org/abs/2107.12375
  • Gainza P, Sverrisson F, Monti F, Rodolà E, Boscaini D, Bronstein MM, Correia BE. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat Methods. 2020;17(2):184–92. doi:10.1038/s41592-019-0666-6.
  • Nunez-Castilla J, Stebliankin V, Baral P, Balbin CA, Sobhan M, Cickovski T, Mondal AM, Narasimhan G, Chapagain P, Mathee K, et al. Molecular mimicry between Spike and human thrombopoietin may induce thrombocytopenia in COVID-19 [Internet]. bioRxiv2021 [cited 2021 Aug 18]; 2021.08.10.455737. https://www.biorxiv.org/content/10.1101/2021.08.10.455737v1
  • Sverrisson F, Feydy J, Correia BE, Bronstein MM. Fast end-to-end learning on protein surfaces [Internet]. bioRxiv2020 [cited 2021 Aug 3]; 2020.Dec.28.424589. https://www.biorxiv.org/content/10.1101/2020.12.28.424589v1
  • Fernández-Quintero ML, Heiss MC, Pomarici ND, Math BA, Liedl KR. Antibody CDR loops as ensembles in solution vs. canonical clusters from X-ray structures. MAbs [Internet]. 2020 [cited 2021 Aug 13]; 12. (1):1744328. doi:10.1080/19420862.2020.1744328.
  • Wong WK, Robinson SA, Bujotzek A, Georges G, Lewis AP, Shi J, Snowden J, Taddese B, Deane CM. Ab-Ligity: identifying sequence-dissimilar antibodies that bind to the same epitope. MAbs. 2021;13(1):1873478. doi:10.1080/19420862.2021.1873478.
  • Woolfson DN. A brief history of de novo protein design: minimal, rational, and computational. J Mol Biol. 2021;433(20):167160. doi:10.1016/j.jmb.2021.167160.
  • Ripoll DR, Chaudhury S, Wallqvist A, Deane CM. Using the antibody-antigen binding interface to train image-based deep neural networks for antibody-epitope classification. PLoS Comput Biol. 2021;17:e1008864. doi:10.1371/journal.pcbi.1008864.
  • Xu Z, Li S, Rozewicki J, Yamashita K, Teraguchi S, Inoue T, Shinnakasu R, Leach S, Kurosaki T, Standley DM. Functional clustering of B cell receptors using sequence and structural features. Mol Syst Des Eng. 2019;4:769–78. doi:10.1039/C9ME00021F.
  • Petti S, Eddy SR. Constructing benchmark test sets for biological sequence analysis using independent set algorithms [Internet]. bioRxiv2021 [cited 2021 Oct 3]; 2021.09.29.462285. https://www.biorxiv.org/content/10.1101/2021.09.29.462285v1.abstract
  • Aikawa E. 3.316 - Immunohistochemistry. In: Ducheyne P, editor. Comprehensive Biomaterials. Oxford: Elsevier; 2011. p. 277–90.
  • Kurumida Y, Saito Y, Kameda T. Predicting antibody affinity changes upon mutations by combining multiple predictors. Sci Rep. 2020;10:19533. doi:10.1038/s41598-020-76369-8.
  • Gohlke H, Hendlich M, Klebe G. Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol. 2000;295:337–56. doi:10.1006/jmbi.1999.3371.
  • Murcko MMA. Computational methods to predict binding free energy in ligand-receptor complexes. J Med Chem. 1995;38(26):4953–67. doi:10.1021/jm00026a001.
  • Weitzner BD, Jeliazkov JR, Lyskov S, Marze N, Kuroda D, Frick R, Adolf-Bryfogle J, Biswas N, Dunbrack DRL, Gray JJ. Modeling and docking of antibody structures with Rosetta. Nat Protoc. 2017;12(2):401–16. doi:10.1038/nprot.2016.180.
  • Lippow SM, Wittrup KD, Tidor B. Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol. 2007;25(10):243–55. doi:10.1038/nbt1336.
  • Sulea T, Vivcharuk V, Corbeil CR, Deprez C, Purisima EO. Assessment of Solvated Interaction Energy Function for Ranking Antibody–Antigen Binding Affinities. J Chem Inf Model. 2016;56(7):1292–303. doi:10.1021/acs.jcim.6b00043.
  • Pires DEV, Ascher DB. mCSM-AB: a web server for predicting antibody–antigen affinity changes upon mutation with graph-based signatures. Nucleic Acids Res. 2016;44:W469–73. doi:10.1093/nar/gkw458.
  • Myung Y, Rodrigues CHM Ascher DB, Dev P. mCSM-AB2: guiding rational antibody design using graph-based signatures [Internet]. Bioinformatics2019. 10.1093/bioinformatics/btz779
  • Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L. The FoldX web server: an online force field. Nucleic Acids Res. 2005;33:W382–8. doi:10.1093/nar/gki387.
  • Myung Y, Pires DEV, Ascher DB. mmCSM-AB: guiding rational antibody engineering through multiple point mutations. Nucleic Acids Res. 2020;48:W125–31. doi:10.1093/nar/gkaa389.
  • Wang M, Cang Z, Wei G-W. A topology-based network tree for the prediction of protein-protein binding affinity changes following mutation. Nat Mach Intell. 2020;2:116–23. doi:10.1038/s42256-020-0149-6.
  • Liu X, Luo Y, Li P, Song S, Peng J, Dunbrack RL. Deep geometric representations for modeling effects of mutations on protein-protein binding affinity. PLoS Comput Biol. 2021;17:e1009284. doi:10.1371/journal.pcbi.1009284.
  • Setliff I, Shiakolas AR, Pilewski KA, Murji AA, Mapengo RE, Janowska K, Richardson S, Oosthuysen C, Raju N, Ronsard L, et al. High-Throughput Mapping of B Cell Receptor Sequences to Antigen Specificity. Cell. 2019;179:1636–46.e15.
  • Shiakolas AR, Kramer KJ, Wrapp D, Richardson SI, Schäfer A, Wall S, Wang N, Janowska K, Pilewski KA, Venkat R, et al. Cross-reactive coronavirus antibodies with diverse epitope specificities and Fc effector functions. Cell Rep. 2021;2:100313. doi:10.1016/j.xcrm.2021.100313.
  • He B, Liu S, Wang Y, Xu M, Cai W, Liu J, Bai W, Ye S, Ma Y, Hu H, et al. Rapid isolation and immune profiling of SARS-CoV-2 specific memory B cell in convalescent COVID-19 patients via LIBRA-seq. Signal Transduct Target Ther. 2021;6:195. doi:10.1038/s41392-021-00610-7.
  • Hu X, Kang S, Lefort C, Kim M, Jin MM. Combinatorial libraries against libraries for selecting neoepitope activation-specific antibodies. Proc Natl Acad Sci U S A. 2010;107:6252–57. doi:10.1073/pnas.0914358107.
  • Bowley DR, Jones TM, Burton DR, Lerner RA. Libraries against libraries for combinatorial selection of replicating antigen-antibody pairs. Proc Natl Acad Sci U S A. 2009;106:1380–85. doi:10.1073/pnas.0812291106.
  • Younger D, Berger S, Baker D. High-throughput characterization of protein–protein interactions by reprogramming yeast mating. Proceedings of the [Internet]. 2017; https://www.pnas.org/content/114/46/12166.short
  • Engelhart E, Lopez R, Emerson R, Lin C, Shikany C, Guion D, Kelley M, Younger D. Massively Multiplexed Affinity Characterization of Therapeutic Antibodies Against SARS-CoV-2 Variants [Internet]. bioRxiv2021 [cited 2021 Aug 1]; 2021.04.27.440939. https://www.biorxiv.org/content/10.1101/2021.04.27.440939v1
  • Erasmus MF, D’Angelo S, Ferrara F, Naranjo L, Teixeira AA, Buonpane R, Stewart SM, Nastri HG, Bradbury ARM. A single donor is sufficient to produce a highly functional in vitro antibody library. Commun Biol. 2021;4:350. doi:10.1038/s42003-021-01881-0.
  • Bradbury ARM, Dübel S, Knappik A, Plückthun A. Animal- versus in vitro-derived antibodies: avoiding the extremes. MAbs. 2021;13:1950265. doi:10.1080/19420862.2021.1950265.
  • Robert PA, Akbar R, Frank R, Pavlović M, Widrich M, Snapkov I, Chernigovskaya M, Scheffer L, Slabodkin A, Mehta BB, et al. One billion synthetic 3D-antibody-antigen complexes enable unconstrained machine-learning formalized investigation of antibody specificity prediction [Internet]. 10.1101/2021.07.06.451258.
  • Robert PA, Arulraj T, Ymir: M-HM. A 3D structural affinity model for multi-epitope vaccine simulations. iScience [Internet]. 2021 [cited 2021 Aug 19];https://www.cell.com/iscience/fulltext/S2589-0042(21)00947-0.
  • Marcou Q, Mora T, Walczak AM. High-throughput immune repertoire analysis with IGoR. Nat Commun. 2018;9:561. doi:10.1038/s41467-018-02832-w.
  • Yang X, Zhu Y, Zeng H, Chen S, Guan J, Wang Q, Lan C, Sun D, Yu X, Zhang Z. Knowledge-based antibody repertoire simulation, a novel allele detection tool evaluation and application[Internet] . bioRxiv2021 [cited 2021 Jul 27]; 2021.07.01.450681. https://www.biorxiv.org/content/10.1101/2021.07.01.450681v1
  • Han J, Kuhn R, Papadopoulou C, Agrafiotis A, Kreiner V, Shlesinger D, Dizerens R, Hong K-L, Weber C, Greiff V, et al. Echidna: integrated simulations of single-cell immune receptor repertoires and transcriptomes [Internet]. bioRxiv2021 [cited 2021 Jul 27]; 2021.07.17.452792. https://www.biorxiv.org/content/10.1101/2021.07.17.452792v1
  • Yermanos A, Greiff V, Krautler NJ, Menzel U, Dounas A, Miho E, Oxenius A, Stadler T, Reddy ST, Kelso J. Comparison of methods for phylogenetic B-cell lineage inference using time-resolved antibody repertoire simulations (AbSim). Bioinformatics [Internet]. 2017 [cited 2017 Sep 1]; 33:3938–46. doi:10.1093/bioinformatics/btx533.
  • Hasan MM, Kahveci T. Indexing a protein-protein interaction network expedites network alignment. Bioinformatics. 2015;16:326. doi:10.1186/s12859-015-0756-0.
  • Sethna Z, Elhanati Y, Jr CCG, Am W, Mora T, Berger B. OLGA: fast computation of generation probabilities of B- and T-cell receptor amino acid sequences and motifs. Bioinformatics [Internet]. 2019;35:2974–81. doi:10.1093/bioinformatics/btz035.
  • Pavlovic M, Scheffer L, Motwani K, Kanduri C. immuneML: an ecosystem for machine learning analysis of adaptive immune receptor repertoires. bioRxiv [Internet]. 2021; https://www.biorxiv.org/content/10.1101/2021.03.08.433891v2.abstract
  • D’Angelo S, Ferrara F, Naranjo L, Erasmus MF, Hraber P, Bradbury ARM. Many Routes to an Antibody Heavy-Chain CDR3: Necessary, Yet Insufficient, for Specific Binding. Front Immunol. 2018;9:395. doi:10.3389/fimmu.2018.00395.
  • Dupic T, Marcou Q, Walczak AM, Mora T, Chain B. Genesis of the αβ T-cell receptor. PLoS Comput Biol. 2019;15:e1006874. doi:10.1371/journal.pcbi.1006874.
  • Shcherbinin DS, Belousov VA, Shugay M, Matsen FA. Comprehensive analysis of structural and sequencing data reveals almost unconstrained chain pairing in TCRαβ complex. PLoS Comput Biol. 2020;16:e1007714. doi:10.1371/journal.pcbi.1007714.
  • AlQuraishi M, Sorger PK. Differentiable biology: using deep learning for biophysics-based and data-driven modeling of molecular mechanisms. Nat Methods. 2021;18:1169–80. doi:10.1038/s41592-021-01283-4.
  • Miyazawa S, Jernigan RL. Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J Mol Biol. 1996;256:623–44. doi:10.1006/jmbi.1996.0114.
  • Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Ł K, Polosukhin I. Attention is all you need. Advances in neural information processing systems. 2017. page 5998–6008.
  • Devlin J, Chang M-W, Lee K, Bert: TK. Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv [cs CL] [Internet]. 2018; http://arxiv.org/abs/1810.04805
  • Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, et al. Language Models are Few-Shot Learners. arXiv [cs CL] [Internet]. 2020; http://arxiv.org/abs/2005.14165
  • Rogers A, Kovaleva O, Rumshisky A. A Primer in BERTology: What we know about how BERT works. arXiv [cs CL] [Internet]. 2020; http://arxiv.org/abs/2002.12327
  • Clark K, Khandelwal U, Levy O, Manning CD. What Does BERT Look At? An Analysis of BERT’s Attention. arXiv [cs CL] Internet]. 2019; http://arxiv.org/abs/1906.04341
  • Michel P, Levy O, Neubig G. Are Sixteen Heads Really Better than One? ArXiv [cs CL] [Internet]. 2019; http://arxiv.org/abs/1905.10650
  • Vig J, Madani A, Varshney LR, Xiong C, Socher R, Rajani NF. BERTology Meets Biology: Interpreting Attention in Protein Language Models. arXiv [cs CL] [Internet]. 2020;http://arxiv.org/abs/2006.15222
  • Babor M, Kortemme T. Multi-constraint computational design suggests that native sequences of germline antibody H3 loops are nearly optimal for conformational flexibility. Proteins: Structure, Function, and Bioinformatics. 2009;75(4):846–58. doi:10.1002/prot.22293.
  • Deszynski P, Mlokosiewicz J, Volanakis A, Jaszczyszyn I, Castellana N, Bonissone S, Ganesan R, Indi KK. Integrated Nanobody Database for Immunoinformatics [Internet]. bioRxiv2021. http://medrxiv.org/lookup/doi/10.1101/2021.08.04.21261581
  • Halperin RF, Stafford P, Johnston SA. Exploring Antibody Recognition of Sequence Space through Random-Sequence Peptide Microarrays. Mol Cell Proteomics [Internet] März. 2011; 01, [cited 2011 Oct 31];10(3):M110.000786. 10.1074/mcp.M110.000786.
  • Greiff V, Redestig H, Lück J, Bruni N, Valai A, Hartmann S, Rausch S, Schuchhardt J, Or-Guil M. A minimal model of peptide binding predicts ensemble properties of serum antibodies. BMC Genomics. 2012;13(1):79. doi:10.1186/1471-2164-13-79.
  • Villegas-Morcillo A, Makrodimitris S, Rchj VH, Gomez AM, Sanchez V, Reinders MJT, Elofsson A. Unsupervised protein embeddings outperform hand-crafted sequence and structure features at predicting molecular function. Bioinformatics. 2021;37:162–70. doi:10.1093/bioinformatics/btaa701.
  • Yang KK, Wu Z, Bedbrook CN, Arnold FH. Learned protein embeddings for machine learning. Bioinformatics. 2018;34:4138. doi:10.1093/bioinformatics/bty455.
  • Ó F-R, Guijarro-Berdiñas B, Martinez-Rego D, Pérez-Sánchez B, Online Machine P-BD. Learning. Efficiency and Scalability Methods for Computational Intellect. IGI Global. 2013. page 27–54.
  • Raybould MIJ, Marks C, Krawczyk K, Taddese B, Nowak J, Lewis AP, Bujotzek A, Shi J, Deane CM. Five computational developability guidelines for therapeutic antibody profiling. Proc Natl Acad Sci U S A. 2019;116:4025–30. doi:10.1073/pnas.1810576116.
  • Xu Y, Wang D, Mason B, Rossomando T, Li N, Liu D, Cheung JK, Xu W, Raghava S, Katiyar A, et al. Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs. 2019;11(2):239–64. doi:10.1080/19420862.2018.1553476.
  • Bailly M, Mieczkowski C, Juan V, Metwally E, Tomazela D, Baker J, Uchida M, Kofman E, Raoufi F, Motlagh S, et al. Predicting Antibody Developability Profiles Through Early Stage Discovery Screening. MAbs. 2020;12(1):1743053. doi:10.1080/19420862.2020.1743053.
  • Ryman JT, Meibohm B. Pharmacokinetics of monoclonal antibodies. CPT: Pharmacometrics and Systems Pharmacology. 2017;6:576–88.
  • Kang TH, Jung ST. Boosting therapeutic potency of antibodies by taming Fc domain functions. Exp Mol Med. [Internet] 2019; 51. (11):1–9. http://dx.doi.org/10.1038/s12276-019-0345-9.
  • Snapkov I, Chernigovskaya M, Sinitcyn P, Lê Quý K, Nyman TA, Greiff V. Progress and challenges in mass spectrometry-based analysis of antibody repertoires. Trends Biotechnol [Internet]. 2021; doi:10.1016/j.tibtech.2021.08.006.
  • Foltz IN, Karow M, Wasserman SM. Evolution and emergence of therapeutic monoclonal antibodies what cardiologists need to know. Circulation. 2013;127:2222–30. doi:10.1161/CIRCULATIONAHA.113.002033.
  • Farid SS, Baron M, Stamatis C, Nie W, Coffman J. Benchmarking biopharmaceutical process development and manufacturing cost contributions to R&D. MAbs. 2020;12:1754999. doi:10.1080/19420862.2020.1754999.
  • Khanal O, Lenhoff AM. Developments and opportunities in continuous biopharmaceutical manufacturing. MAbs. 2021;13:1903664. doi:10.1080/19420862.2021.1903664.
  • Yang X, Xu W, Dukleska S, Benchaar S, Mengisen S, Antochshuk V, Cheung J, Mann L, Babadjanova Z, Rowand J, et al. Developability studies before initiation of process development: improving manufacturability of monoclonal antibodies. MAbs. 2013;5:787–94. doi:10.4161/mabs.25269.
  • Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: From structure to effector functions. Front Immunol. 2014;5:1–17. doi:10.3389/fimmu.2014.00520.
  • Saunders KO. Conceptual approaches to modulating antibody effector functions and circulation half-life. Front Immunol. 2019;10:1–20. doi:10.3389/fimmu.2019.01296.
  • Dumet C, Pottier J, Gouilleux-Gruart V, Watier H. Insights into the IgG heavy chain engineering patent landscape as applied to IgG4 antibody development. MAbs. 2019;11:1341–50. doi:10.1080/19420862.2019.1664365.
  • Brezski RJ, Georgiou G. Immunoglobulin isotype knowledge and application to Fc engineering. Curr Opin Immunol. 2016;40:62–69. doi:10.1016/j.coi.2016.03.002.
  • Schlothauer T, Herter S, Koller CF, Grau-Richards S, Steinhart V, Spick C, Kubbies M, Klein C, Umaña P, Mössner E. Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions. Protein Eng Des Sel. 2016;29:457–66. doi:10.1093/protein/gzw040.
  • Chen X, Dougherty T, Hong C, Schibler R, Cong Y, Reza Z. Predicting Antibody Developability from Sequence using Machine Learning. biorxiv. 2020; 2–8.
  • Chennamsetty N, Voynov V, Kayser V, Helk B, Trout BL. Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci U S A. 2009;106(29):11937–42. doi:10.1073/pnas.0904191106.
  • Bekker G-J, Ma B, Kamiya N. Thermal stability of single-domain antibodies estimated by molecular dynamics simulations. Protein Sci. 2019;28:429–38. doi:10.1002/pro.3546.
  • Gentiluomo L, Roessner D, Augustijn D, Svilenov H, Kulakova A, Mahapatra S, Winter G, Streicher W, Å R, Peters GHJ, et al. Application of interpretable artificial neural networks to early monoclonal antibodies development. Eur J Pharm Biopharm. 2019;141:81–89. doi:10.1016/j.ejpb.2019.05.017.
  • Lauer TM, Agrawal NJ, Chennamsetty N, Egodage K, Helk B, Trout BL. Developability Index: A Rapid In Silico Tool for the Screening of Antibody Aggregation Propensity. J Pharm Sci. 2012;101(1):2271–80. doi:10.1002/jps.22758.
  • Rawat P, Prabakaran R, Kumar S, Gromiha MM. AbsoluRATE: An in-silico method to predict the aggregation kinetics of native proteins. Biochim Biophys Acta: Proteins Proteomics. 2021;1869:140682. doi:10.1016/j.bbapap.2021.140682.
  • Rawat P, Prabakaran R, Kumar S, Gromiha MM. Exploring the sequence features determining amyloidosis in human antibody light chains. Sci Rep. 2021;11:13785. doi:10.1038/s41598-021-93019-9.
  • Van Durme J, De Baets G, Van Der Kant R, Ramakers M, Ganesan A, Wilkinson H, Gallardo R, Rousseau F, Schymkowitz J. Solubis: a webserver to reduce protein aggregation through mutation. Protein Eng Des Sel. 2016;29(8):285–89. doi:10.1093/protein/gzw019.
  • Magnan CN, Randall A, Baldi P. SOLpro: accurate sequence-based prediction of protein solubility. Bioinformatics. 2009;25(17):2200–07. doi:10.1093/bioinformatics/btp386.
  • Hebditch M, Carballo-Amador MA, Charonis S, Curtis R, Warwicker J. Protein–Sol: a web tool for predicting protein solubility from sequence. Bioinformatics. 2017;33:3098–100.
  • Sormanni P, Vendruscolo M. Protein Solubility Predictions Using the CamSol Method in the Study of Protein Homeostasis. CSH Perspect Biol [Internet]. 2019;11. http://dx.doi.org/10.1101/cshperspect.a033845
  • Bhandari BK, Gardner PP, Lim CS. Solubility-Weighted Index: fast and accurate prediction of protein solubility. Bioinformatics. 2020;36:4691–98. doi:10.1093/bioinformatics/btaa578.
  • Khurana S, Rawi R, Kunji K, Chuang G-Y, Bensmail H, Mall R. DeepSol: a deep learning framework for sequence-based protein solubility prediction. Bioinformatics. 2018;34:2605–13. doi:10.1093/bioinformatics/bty166.
  • Li L, Kumar S, Buck PM, Burns C, Lavoie J, Singh SK, Warne NW, Nichols P, Luksha N, Boardman D. Concentration dependent viscosity of monoclonal antibody solutions: explaining experimental behavior in terms of molecular properties. Pharm Res. 2014;31:3161–78. doi:10.1007/s11095-014-1409-0.
  • Sharma VK, Patapoff TW, Kabakoff B, Pai S, Hilario E, Zhang B, Li C, Borisov O, Kelley RF, Chorny I, et al. In silico selection of therapeutic antibodies for development: viscosity, clearance, and chemical stability. Proc Natl Acad Sci U S A. 2014;111:18601–06. doi:10.1073/pnas.1421779112.
  • Tomar DS, Li L, Broulidakis MP, Luksha NG, Burns CT, Singh SK, Kumar S. In-silico prediction of concentration-dependent viscosity curves for monoclonal antibody solutions. MAbs. 2017;9:476–89. doi:10.1080/19420862.2017.1285479.
  • Nichols P, Li L, Kumar S, Buck PM, Singh SK, Goswami S, Balthazor B, Conley TR, Sek D, Allen MJ. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions. MAbs. 2015;7:212–30. doi:10.4161/19420862.2014.985504.
  • Lai P-K, Fernando A, Cloutier TK, Gokarn Y, Zhang J, Schwenger W, Chari R, Calero-Rubio C, Trout BL. Machine Learning Applied to Determine the Molecular Descriptors Responsible for the Viscosity Behavior of Concentrated Therapeutic Antibodies. Mol Pharm. 2021;18:1167–75. doi:10.1021/acs.molpharmaceut.0c01073.
  • Agrawal NJ, Helk B, Kumar S, Mody N, Sathish HA, Samra HS, Buck PM, Li L, Trout BL. Computational tool for the early screening of monoclonal antibodies for their viscosities. MAbs. 2016;8:43–48. doi:10.1080/19420862.2015.1099773.
  • Lai P-K, Swan JW, Trout BL. Calculation of therapeutic antibody viscosity with coarse-grained models, hydrodynamic calculations and machine learning-based parameters. MAbs. 2021;13:1907882. doi:10.1080/19420862.2021.1907882.
  • Tilegenova C, Izadi S, Yin J, Huang CS, Wu J, Ellerman D, Hymowitz SG, Walters B, Salisbury C, Carter PJ. Dissecting the molecular basis of high viscosity of monospecific and bispecific IgG antibodies. MAbs. 2020;12:1692764. doi:10.1080/19420862.2019.1692764.
  • Schwenger W, Pellet C, Attonaty D, Authelin J-R. An Empirical Quantitative Model Describing Simultaneously Temperature and Concentration Effects on Protein Solution Viscosity. J Pharm Sci. 2020;109:1281–87. doi:10.1016/j.xphs.2019.12.001.
  • Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M. Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data. J Proteome Res. 2020;19:2304–15. doi:10.1021/acs.jproteome.9b00874.
  • Marks C, Hummer AM, Chin M, Deane CM, Martelli PL. Humanization of antibodies using a machine learning approach on large-scale repertoire data. Bioinformatics [Internet]. 2021; doi:10.1093/bioinformatics/btab434.
  • Prihoda D, Maamary J, Waight A, Juan V, Fayadat-Dilman L, Svozil D, Bitton DA. BioPhi: A platform for antibody design, humanization and humanness evaluation based on natural antibody repertoires and deep learning [Internet]. bioRxiv2021 [cited 2021 Aug 11]; 2021.08.08.455394. https://www.biorxiv.org/content/10.1101/2021.08.08.455394v1
  • Gao SH, Huang K, Tu H, Adler AS. Monoclonal antibody humanness score and its applications. BMC Biotechnol. 2013;13:55. doi:10.1186/1472-6750-13-55.
  • Goulet DR, Watson MJ, Tam SH, Zwolak A, Chiu ML, Atkins WM, Nath A. Toward a Combinatorial Approach for the Prediction of IgG Half-Life and Clearance. Drug Metab Dispos. 2018;46:1900–07. doi:10.1124/dmd.118.081893.
  • Grinshpun B, Thorsteinson N, Pereira JN, Rippmann F, Nannemann D, Sood VD, Fomekong Nanfack Y. Identifying biophysical assays and in silico properties that enrich for slow clearance in clinical-stage therapeutic antibodies. MAbs. 2021;13:1932230. doi:10.1080/19420862.2021.1932230.
  • Kuriata A, Iglesias V, Pujols J, Kurcinski M, Kmiecik S, Ventura S. Aggrescan3D (A3D) 2.0: prediction and engineering of protein solubility. Nucleic Acids Res. 2019;47:W300–7.
  • Suzuki T, Ishii-Watabe A, Tada M, Kobayashi T, Kanayasu-Toyoda T, Kawanishi T, Yamaguchi T. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. J Immunol. 2010;184:1968–76. doi:10.4049/jimmunol.0903296.
  • Shehata L, Maurer DP, Wec AZ, Lilov A, Champney E, Sun T, Archambault K, Burnina I, Lynaugh H, Zhi X, et al. Affinity Maturation Enhances Antibody Specificity but Compromises Conformational Stability. Cell Rep. 2019;28(4):3300–08. doi:10.1016/j.celrep.2019.08.056.
  • Zhou H, Hu C, Zhu Y, Lu M, Liao S, Yeilding N, Davis HM. Population-based exposure-efficacy modeling of ustekinumab in patients with moderate to severe plaque psoriasis. J Clin Pharmacol. 2010;50:257–67. doi:10.1177/0091270009343695.
  • Gandhi M, Alwawi E, Gordon KB. Anti-p40 antibodies ustekinumab and briakinumab: blockade of interleukin-12 and interleukin-23 in the treatment of psoriasis. Semin Cutan Med Surg. 2010;29:48–52. doi:10.1016/j.sder.2010.02.001.
  • Ovacik M, Lin K. Tutorial on Monoclonal Antibody Pharmacokinetics and Its Considerations in Early Development. Clin Transl Sci. 2018;11:540–52. doi:10.1111/cts.12567.
  • Putnam WS, Prabhu S, Zheng Y, Subramanyam M, Wang Y-MC. Pharmacokinetic, pharmacodynamic and immunogenicity comparability assessment strategies for monoclonal antibodies. Trends Biotechnol. 2010;28:509–16. doi:10.1016/j.tibtech.2010.07.001.
  • Bumbaca Yadav D, Sharma VK, Boswell CA, Hotzel I, Tesar D, Shang Y, Ying Y, Fischer SK, Grogan JL, Chiang EY, et al. Evaluating the use of antibody variable region (Fv) charge as a risk assessment tool for predicting typical Cynomolgus monkey pharmacokinetics. J Biol Chem. 2015;290:29732–41. doi:10.1074/jbc.M115.692434.
  • Igawa T, Tsunoda H, Tachibana T, Maeda A, Mimoto F, Moriyama C, Nanami M, Sekimori Y, Nabuchi Y, Aso Y, et al. Reduced elimination of IgG antibodies by engineering the variable region. Protein Eng Des Sel. 2010;23:385–92. doi:10.1093/protein/gzq009.
  • Wang W, Lu P, Fang Y, Hamuro L, Pittman T, Carr B, Hochman J, Prueksaritanont T. Monoclonal antibodies with identical Fc sequences can bind to FcRn differentially with pharmacokinetic consequences. Drug Metab Dispos. 2011;39:1469–77. doi:10.1124/dmd.111.039453.
  • Piche-Nicholas NM, Avery LB, King AC, Kavosi M, Wang M, O’Hara DM, Tchistiakova L, Katragadda M. Changes in complementarity-determining regions significantly alter IgG binding to the neonatal Fc receptor (FcRn) and pharmacokinetics. MAbs. 2018;10:81–94. doi:10.1080/19420862.2017.1389355.
  • Vaccaro C, Bawdon R, Wanjie S, Ober RJ, Sally Ward E. Divergent activities of an engineered antibody in murine and human systems have implications for therapeutic antibodies. Proc Natl Acad Sci U S A. 2006;103:18709–14. doi:10.1073/pnas.0606304103.
  • Andersen JT, Daba MB, Berntzen G, Michaelsen TE, Sandlie I. Cross-species binding analyses of mouse and human neonatal Fc receptor show dramatic differences in immunoglobulin G and albumin binding. J Biol Chem. 2010;285:4826–36. doi:10.1074/jbc.M109.081828.
  • Roopenian DC, Christianson GJ, Proetzel G, Sproule TJ. Human FcRn Transgenic Mice for Pharmacokinetic Evaluation of Therapeutic Antibodies. Methods Mol Biol. 2016;1438:103–14.
  • Nilsen J, Sandlie I, Roopenian DC, Andersen JT. Animal models for evaluation of albumin-based therapeutics. Curr Opin Chem Eng. 2018;19:68–76. doi:10.1016/j.coche.2017.11.007.
  • Grevys A, Nilsen J, Kmk S, Mb D, Øynebråten I, Bern M, Mb M, Foss S, Schlothauer T, Te M, et al. A human endothelial cell-based recycling assay for screening of FcRn targeted molecules. Nat Commun. 2018;9:621. doi:10.1038/s41467-018-03061-x.
  • Kelly RL, Sun T, Jain T, Caffry I, Yu Y, Cao Y, Lynaugh H, Brown M, Vásquez M, Wittrup KD, et al. High throughput cross-interaction measures for human IgG1 antibodies correlate with clearance rates in mice. MAbs. 2015;7:770–77. doi:10.1080/19420862.2015.1043503.
  • Chai Q, Shih J, Weldon C, Phan S, Jones BE. Development of a high-throughput solubility screening assay for use in antibody discovery. MAbs. 2019;11:747–56. doi:10.1080/19420862.2019.1589851.
  • Lowe D, Dudgeon K, Rouet R, Schofield P, Jermutus L, Christ D. Aggregation, stability, and formulation of human antibody therapeutics. Adv Protein Chem Struct Biol. 2011;84:41–61.
  • Liu L, Braun LJ, Wang W, Randolph TW, Carpenter JF. Freezing-induced perturbation of tertiary structure of a monoclonal antibody. J Pharm Sci. 2014;103:1979–86. doi:10.1002/jps.24013.
  • Le Basle Y, Chennell P, Tokhadze N, Astier A, Sautou V. Physicochemical Stability of Monoclonal Antibodies: A Review. J Pharm Sci. 2020;109(1):169–90. doi:10.1016/j.xphs.2019.08.009.
  • Brader ML, Estey T, Bai S, Alston RW, Lucas KK, Lantz S, Landsman P, Maloney KM. Examination of thermal unfolding and aggregation profiles of a series of developable therapeutic monoclonal antibodies. Mol Pharm. 2015;12:1005–17. doi:10.1021/mp400666b.
  • Dooley H, Grant SD, Harris WJ, Porter AJ. Stabilization of antibody fragments in adverse environments. Biotechnol Appl Biochem. 1998;28:77–83.
  • Ad M, Spasojevich V, Jl M, Ip K, Chen A, Jc S, Berkebile A, Ra H, Neben S, Dj K, et al. An integrated approach to extreme thermostabilization and affinity maturation of an antibody. Protein Eng Des Sel. 2013;26:151–64. doi:10.1093/protein/gzs090.
  • Ad M, Zhang X, Jl M, Chau B, Jc S, Rahmanian S, Hare E, Spasojevic V, Ra H, Dj K, et al. A general approach to antibody thermostabilization. MAbs. 2014;6:1274–82. doi:10.4161/mabs.29680.
  • Al Qaraghuli MM, Kubiak-Ossowska K, Mulheran PA. Thinking outside the Laboratory: Analyses of Antibody Structure and Dynamics within Different Solvent Environments in Molecular Dynamics (MD) Simulations. Antibodies (Basel) [Internet]. 2018; 7. doi:10.3390/antib7030021.
  • Jia L, Jain M, Sun Y. Improving antibody thermostability based on statistical analysis of sequence and structural consensus data. bioRxiv [Internet]. 2021; https://www.biorxiv.org/content/10.1101/2021.01.28.428721v1.abstract
  • Lee J, Der BS, Karamitros CS, Li W, Marshall NM, Lungu OI, Miklos AE, Xu J, Kang TH, Lee C-H, et al. Computer-based Engineering of Thermostabilized Antibody Fragments. AIChE J [Internet]. 2020; 66(3):http://dx.doi.org/10.1002/aic.16864
  • Wang X, Singh SK, Kumar S. Potential aggregation-prone regions in complementarity-determining regions of antibodies and their contribution towards antigen recognition: a computational analysis. Pharm Res. 2010;27:1512–29. doi:10.1007/s11095-010-0143-5.
  • Perchiacca JM, Bhattacharya M, Tessier PM. Mutational analysis of domain antibodies reveals aggregation hotspots within and near the complementarity determining regions. Proteins. 2011;79:2637–47. doi:10.1002/prot.23085.
  • Wang X, Das TK, Singh SK, Kumar S. Potential aggregation prone regions in biotherapeutics: A survey of commercial monoclonal antibodies. MAbs. 2009;1:254–67. doi:10.4161/mabs.1.3.8035.
  • Prabakaran R, Rawat P, Kumar S, Gromiha MM. Evaluation of in silico tools for the prediction of protein and peptide aggregation on diverse datasets. Brief Bioinform [Internet]. 2021; doi:10.1093/bib/bbab240.
  • Prabakaran R, Rawat P, Thangakani AM, Kumar S, Gromiha MM. Protein aggregation: in silico algorithms and applications. Biophys Rev. 2021;13:71–89. doi:10.1007/s12551-021-00778-w.
  • Rawat P, Prabakaran R, Sakthivel R, Mary Thangakani A, Kumar S, Gromiha MMCPAD. CPAD 2.0: a repository of curated experimental data on aggregating proteins and peptides. Amyloid. 2020;27(2):128–33. doi:10.1080/13506129.2020.1715363.
  • van der Kant R, Karow-Zwick AR, Van Durme J, Blech M, Gallardo R, Seeliger D. Aßfalg K, Baatsen P, Compernolle G, Gils A, et al. Prediction and Reduction of the Aggregation of Monoclonal Antibodies. J Mol Biol. 2017;429:1244–61.
  • Sormanni P, Amery L, Ekizoglou S, Vendruscolo M, Popovic B. Rapid and accurate in silico solubility screening of a monoclonal antibody library. Sci Rep. 2017;7:8200. doi:10.1038/s41598-017-07800-w.
  • Tomar DS, Kumar S, Singh SK, Goswami S, Li L. Molecular basis of high viscosity in concentrated antibody solutions: Strategies for high concentration drug product development. MAbs. 2016;8:216–28. doi:10.1080/19420862.2015.1128606.
  • Goswami S, Wang W, Arakawa T, Developments OS. Challenges for mAb-Based Therapeutics. Antibodies. 2013;2:452–500. doi:10.3390/antib2030452.
  • Chowdhury A, Bollinger JA, Dear BJ, Cheung JK, Johnston KP, Truskett TM. Coarse-Grained Molecular Dynamics Simulations for Understanding the Impact of Short-Range Anisotropic Attractions on Structure and Viscosity of Concentrated Monoclonal Antibody Solutions. Mol Pharm. 2020;17:1748–56. doi:10.1021/acs.molpharmaceut.9b00960.
  • Kingsbury JS, Saini A, Auclair SM, Fu L, Lantz MM, Halloran KT, Calero-Rubio C, Schwenger W, Airiau CY, Zhang J, et al. A single molecular descriptor to predict solution behavior of therapeutic antibodies. Sci Adv. 2020;6:eabb0372. doi:10.1126/sciadv.abb0372.
  • Zinsli LV, Stierlin N, Loessner MJ, Schmelcher M. Deimmunization of protein therapeutics - Recent advances in experimental and computational epitope prediction and deletion. Comput Struct Biotechnol J. 2021;19:315–29. doi:10.1016/j.csbj.2020.12.024.
  • Roda G, Jharap B, Neeraj N, Colombel J-F. Loss of response to anti-TNFs: Definition, epidemiology, and management. Clin Transl Gastroenterol. 2016;7:e135. doi:10.1038/ctg.2015.63.
  • Reinhold I, Blümel S, Schreiner J, Boyman O, Bögeholz J, Cheetham M, Rogler G, Biedermann L, Scharl M. Clinical Relevance of Anti-TNF Antibody Trough Levels and Anti-Drug Antibodies in Treating Inflammatory Bowel Disease Patients. Inflamm Intest Dis. 2021;6:38–47. doi:10.1159/000511296.
  • Hwang WYK, Foote J. Immunogenicity of engineered antibodies. Methods. 2005 5;36:3–10. doi:10.1016/j.ymeth.2005.01.001.
  • Liang S, Zhang C, Gill AC. Prediction of immunogenicity for humanized and full human therapeutic antibodies. PLoS One. 2020;15:e0238150. doi:10.1371/journal.pone.0238150.
  • Doneva N, Doytchinova I, Dimitrov I. Predicting Immunogenicity Risk in Biopharmaceuticals. Symmetry. 2021;13:388. doi:10.3390/sym13030388.
  • Unanue ER, Turk V, Neefjes J. Variations in MHC Class II Antigen Processing and Presentation in Health and Disease. Annu Rev Immunol. 2016;34(1):265–97. doi:10.1146/annurev-immunol-041015-055420.
  • Wieczorek M, Abualrous ET, Sticht J, Álvaro-Benito M, Stolzenberg S, Noé F, Freund C. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. Front Immunol [Internet]. 2017 [cited 2021 Jul 19]; 8. doi:10.3389/fimmu.2017.00292.
  • Enrico D, Paci A, Chaput N, Karamouza E, Besse B. Antidrug Antibodies Against Immune Checkpoint Blockers: Impairment of Drug Efficacy or Indication of Immune Activation? Clin Cancer Res. 2020;26:787–92. doi:10.1158/1078-0432.CCR-19-2337.
  • Todd PA, Brogden RN. Muromonab CD3. Drugs. 1989;37:871–99. doi:10.2165/00003495-198937060-00004.
  • Clavero-Álvarez A, Di Mambro T, Perez-Gaviro S, Magnani M, Bruscolini P. Humanization of Antibodies using a Statistical Inference Approach. Sci Rep. 2018;8:1–11. doi:10.1038/s41598-018-32986-y.
  • Harding FA, Stickler MM, Razo J, DuBridge RB. The immunogenicity of humanized and fully human antibodies: residual immunogenicity resides in the CDR regions. MAbs. 2010;2:256–65. doi:10.4161/mabs.2.3.11641.
  • The Antibody Society. Therapeutic monoclonal antibodies approved or in review in the EU or US. [Internet]. The Antibody Society2021 [cited 2021 Jul 19]; https://www.antibodysociety.org/antibody-therapeutics-product-data/
  • Williams DG, Matthews DJ, Jones T. Humanising Antibodies by CDR Grafting. In: Kontermann R, Dübel S, editors. Antibody Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. p. 319–39.
  • Petersen BM, Ulmer SA, Rhodes ER, Gonzalez MFG. Regulatory approved monoclonal antibodies contain framework mutations predicted from human antibody repertoires. bioRxiv [Internet]. 2021; https://www.biorxiv.org/content/10.1101/2021.06.22.449488v1.abstract
  • Almagro JC, Daniels-Wells TR, Perez-Tapia SM, Penichet ML. Progress and Challenges in the Design and Clinical Development of Antibodies for Cancer Therapy. Front Immunol. 2018;8:1751. doi:10.3389/fimmu.2017.01751.
  • Doevendans E, Schellekens H. Immunogenicity of Innovative and Biosimilar Monoclonal Antibodies. Antibodies (Basel) [Internet]. 2019;8(1). http://dx.doi.org/10.3390/antib8010021
  • Nl D, Np C, Rb S, Sh R, Aw P. A Systems Approach to Understand Antigen Presentation and the Immune Response. In: Reinders J, editor. Proteomis in Systems Biology. New York, NY: Springer New York; 2016. p. 189–209.
  • Caron E, Kowalewski D, Chiek Koh C, Sturm T, Schuster H, Aebersold R. Analysis of Major Histocompatibility Complex (MHC) Immunopeptidomes Using Mass Spectrometry. Mol Cell Proteomics 12/2015. 14:3105–17. doi:10.1074/mcp.O115.052431.
  • Robinson J, Barker DJ, Georgiou X, Cooper MA, Flicek P, Marsh SGE. IPD-IMGT/HLA Database. Nucleic Acids Res. 2020;48:D948–55. doi:10.1093/nar/gkz950.
  • Cole DK. The ultimate mix and match: making sense of HLA alleles and peptide repertoires. Immunol Cell Biol 07/2015. 93:515–16. doi:10.1038/icb.2015.40.
  • Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters B. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 2019;47:D339–43. doi:10.1093/nar/gky1006.
  • Alvarez B, Reynisson B, Barra C, Buus S, Ternette N, Connelley T, Andreatta M, Nielsen M. NNAlign_MA; MHC Peptidome Deconvolution for Accurate MHC Binding Motif Characterization and Improved T-cell Epitope Predictions. Mol Cell Proteomics. 2019 12;18(18):2459–77. doi:10.1074/mcp.TIR119.001658.
  • Greenbaum J, Sidney J, Chung J, Brander C, Peters B, Sette A. Functional classification of class II human leukocyte antigen (HLA) molecules reveals seven different supertypes and a surprising degree of repertoire sharing across supertypes. Immunogenetics 6/2011. 63:325–35. doi:10.1007/s00251-011-0513-0.
  • Kuroda D, Engineering Stability TK. Viscosity, and Immunogenicity of Antibodies by Computational Design. J Pharm Sci. 2020;109:1631–51. doi:10.1016/j.xphs.2020.01.011.
  • Krawczyk K, Buchanan A, Marcatili P. Data mining patented antibody sequences. MAbs. 2021;13:1892366. doi:10.1080/19420862.2021.1892366.
  • Habibi N, Mohd Hashim SZ, Norouzi A, Samian MR. A review of machine learning methods to predict the solubility of overexpressed recombinant proteins in Escherichia coli. BMC Bioinformatics. 2014;15:134. doi:10.1186/1471-2105-15-134.
  • Delmar JA, Buehler E, Chetty AK, Das A, Quesada GM, Wang J, Chen X. Machine learning prediction of methionine and tryptophan photooxidation susceptibility. Mol Ther Methods Clin Dev. 2021;21:466–77. doi:10.1016/j.omtm.2021.03.023.
  • Liu G, Zeng H, Mueller J, Carter B, Wang Z, Schilz J, Horny G, Birnbaum ME, Ewert S, Gifford DK. Antibody complementarity determining region design using high-capacity machine learning. Bioinformatics. 2020;36:2126–33. doi:10.1093/bioinformatics/btz895.
  • Saka K, Kakuzaki T, Metsugi S, Kashiwagi D, Yoshida K, Wada M, Tsunoda H, Teramoto R. Antibody design using LSTM based deep generative model from phage display library for affinity maturation. Sci Rep. 2021;11:5852. doi:10.1038/s41598-021-85274-7.
  • Eguchi RR, Anand N, Choe CA, Huang PS. Ig-VAE: generative modeling of immunoglobulin proteins by direct 3D coordinate generation. bioRxiv [Internet]. 2020; https://www.biorxiv.org/content/10.1101/2020.08.07.242347v1.abstract
  • Jin W, Wohlwend J, Barzilay R, Jaakkola T. Iterative Refinement Graph Neural Network for Antibody Sequence-Structure Co-design. arXiv [q-bio.BM] [Internet]. 2021; http://arxiv.org/abs/2110.04624
  • Melnyk I, Das P, Chenthamarakshan V, Lozano A. Benchmarking deep generative models for diverse antibody sequence design. arXiv [q-bio.BM] [Internet]. 2021; http://arxiv.org/abs/2111.06801
  • Kingma DP, Welling M. Auto-Encoding Variational Bayes. arXiv [stat.ML] [Internet]. 2013; http://arxiv.org/abs/1312.6114v10
  • Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. Generative Adversarial Nets. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ editors. Advances in Neural Information Processing Systems 27. Curran Associates, Inc; 2014. p. 2672–80.
  • Gonog L, Zhou Y. A Review: Generative Adversarial Networks. In: 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA). 2019. 505–10.
  • Dan Y, Zhao Y, Li X, Li S, Hu M, Hu J. Generative adversarial networks (GAN) based efficient sampling of chemical composition space for inverse design of inorganic materials. npj Computational Materials. 2020;6(1):1–7. doi:10.1038/s41524-020-00352-0.
  • Repecka D, Jauniskis V, Karpus L, Rembeza E, Rokaitis I, Zrimec J, Poviloniene S, Laurynenas A, Viknander S, Abuajwa W, et al. Expanding functional protein sequence spaces using generative adversarial networks. Nat Mach Intell. 2021;3(4):324–33. doi:10.1038/s42256-021-00310-5.
  • Mirza M, Osindero S. Conditional Generative Adversarial Nets. arXiv [cs.LG] [Internet]. 2014; http://arxiv.org/abs/1411.1784
  • Odena A, Olah C, Shlens J. Conditional image synthesis with auxiliary classifier gans. In: International conference on machine learning. PMLR; 2017. page 2642–51.
  • Miyato T, Koyama M. cGANs with Projection Discriminator. arXiv [cs.LG] [Internet]. 2018; http://arxiv.org/abs/1802.05637
  • Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks. In: International conference on machine learning. PMLR; 2017. page 214–23.
  • Sinai S, Kelsic E, Church GM, Nowak MA. Variational auto-encoding of protein sequences. arXiv [q-bio.QM] [Internet]. 2017; http://arxiv.org/abs/1712.03346
  • Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, Kaufman K, Renfrew PD, Smith CA, Sheffler W, et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 2011;487:545–74.
  • Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res. 2005;33(Web Server):W363–7. doi:10.1093/nar/gki481.
  • Costello Z, Martin HG. How to Hallucinate Functional Proteins. arXiv [q-bio.QM] [Internet]. 2019; http://arxiv.org/abs/1903.00458
  • Hamed M, Logan A, Gruszczyk AV, Beach TE, James AM, Dare AJ, Barlow A, Martin J, Georgakopoulos L, Gane AM. Mitochondria-targeted antioxidant MitoQ ameliorates ischaemia-reperfusion injury in kidney transplantation models[Internet]. [cited 2021 Sep 11]; The British journal of surgery. 108(9): 1072–81. doi:10.1093/bjs/znab108
  • Bond-Taylor S, Leach A, Long Y, Willcocks CG. Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models. arXiv [cs.LG] [Internet]. 2021; http://arxiv.org/abs/2103.04922
  • McCoy LE, Rutten L, Frampton D, Anderson I, Granger L, Bashford-Rogers R, Dekkers G, Strokappe NM, Seaman MS, Koh W, et al. Molecular evolution of broadly neutralizing Llama antibodies to the CD4-binding site of HIV-1. PLoS Pathog. 2014;10(12):e1004552. doi:10.1371/journal.ppat.1004552.
  • Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982;157(1):105–32. doi:10.1016/0022-2836(82)90515-0.
  • Bjellqvist B, Hughes GJ, Pasquali C, Paquet N, Ravier F, Sanchez J-C, Frutiger S, Hochstrasser D. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis. 1993;14(1):1023–31. doi:10.1002/elps.11501401163.
  • Müller AT, Hiss JA, Schneider G. Recurrent Neural Network Model for Constructive Peptide Design. J Chem Inf Model. 2018;58(2):472–79. doi:10.1021/acs.jcim.7b00414.
  • Biswas S, Khimulya G, Alley EC, Esvelt KM, Church GM. Low-N protein engineering with data-efficient deep learning. Nat Methods. 2021;18(4):389–96. doi:10.1038/s41592-021-01100-y.
  • Liu Y, Ye Q, Wang L, Peng J. Learning structural motif representations for efficient protein structure search. Bioinformatics. 2018;34(17):i773–80. doi:10.1093/bioinformatics/bty585.
  • Araujo A, Norris W, Sim J. Computing receptive fields of convolutional neural networks. Distill [Internet]. 2019;4(11). https://distill.pub/2019/computing-receptive-fields
  • Shanehsazzadeh A, Belanger D, Dohan D. Is Transfer Learning Necessary for Protein Landscape Prediction? ArXiv [q-bio.BM] [Internet]. 2020;http://arxiv.org/abs/2011.03443
  • Wu Z, Yang KK, Liszka MJ, Lee A, Batzilla A, Wernick D, Weiner DP, Arnold FH. Signal Peptides Generated by Attention-Based Neural Networks. ACS Synth Biol. 2020;9:2154–61. doi:10.1021/acssynbio.0c00219.
  • Madani A, McCann B, Naik N, Keskar NS, Anand N, Eguchi RR, P-s H, Socher R. ProGen: Language Modeling for Protein Generation [Internet]. 2020;DOI:10.1101/2020.03.07.982272.
  • Ingraham J, Garg VK, Barzilay R, Jaakkola T. Generative Models for Graph-Based Protein Design [Internet]. 2019. cited 2021 Sep 1. https://openreview.net/pdf?id=ByMEAHrgLB
  • Sircar A, Gray JJ, Kortemme T. SnugDock: paratope structural optimization during antibody-antigen docking compensates for errors in antibody homology models. PLoS Comput Biol. 2010;6:e1000644. doi:10.1371/journal.pcbi.1000644.
  • Pierce BG, Wiehe K, Hwang H, Kim B-H, Vreven T, Weng Z. ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. Bioinformatics. 2014;30:1771–73. doi:10.1093/bioinformatics/btu097.
  • Bekker G-J, Fukuda I, Higo J, Kamiya N. Mutual population-shift driven antibody-peptide binding elucidated by molecular dynamics simulations. Sci Rep. 2020;10:1406. doi:10.1038/s41598-020-58320-z.
  • Renz P, Van Rompaey D, Wegner JK, Hochreiter S, Klambauer G, Sung K-J, Jia H, Johnson JM, Saeed M, Mace CR. On Failure Modes of Molecule Generators and Optimizers. ChemRxiv [Internet]. [cited 2021 Jul 28]; doi:10.26434/chemrxiv.14442785.
  • Lotfollahi M, Naghipourfar M, Theis FJ, Wolf FA. Conditional out-of-distribution generation for unpaired data using transfer VAE. Bioinformatics. 2020;36:i610–7. doi:10.1093/bioinformatics/btaa800.
  • Lim J, Ryu S, Kim JW, Kim WY. Molecular generative model based on conditional variational autoencoder for de novo molecular design. J Cheminform. 2018;10(1):31. doi:10.1186/s13321-018-0286-7.
  • Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, et al. Highly accurate protein structure prediction with AlphaFold. Nature [Internet]. 2021; doi:10.1038/s41586-021-03819-2.
  • Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, Wang J, Cong Q, Kinch LN, Schaeffer RD, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science. 2021;373:871–76. doi:10.1126/science.abj8754.
  • Hunter JD. Matplotlib: A 2D Graphics Environment. Comput Sci Eng. 2007;9:90–95. doi:10.1109/MCSE.2007.55.
  • R Core Team. R: A language and environment for statistical computing [Internet]. 2014; http://www.R-project.org/.