3,620
Views
13
CrossRef citations to date
0
Altmetric
Report

Development of QSAR models for in silico screening of antibody solubility

, ORCID Icon, , ORCID Icon &
Article: 2062807 | Received 30 Sep 2021, Accepted 01 Apr 2022, Published online: 20 Apr 2022

References

  • Commissioner O of the. FDA Grants Accelerated Approval for Alzheimer’s Drug. FDA. 2021 Jun 7 [accessed 2021 Jul 8]. https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-drug
  • Commissioner O of the. Coronavirus (COVID-19) Update: FDA authorizes monoclonal antibodies for treatment of COVID-19. FDA. 2020 Nov 23 [accessed 2021 Jul 8]. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-monoclonal-antibodies-treatment-covid-19
  • Commissioner O of the. coronavirus (COVID-19) update: FDA authorizes additional monoclonal antibody for treatment of COVID-19. FDA. 2021 May 26 [accessed 2021 Jul 8]. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-additional-monoclonal-antibody-treatment-covid-19
  • Kelley B. Developing therapeutic monoclonal antibodies at pandemic pace. Nature Biotechnology. 2020;38(5):540–12. doi:10.1038/s41587-020-0512-5.
  • Jarasch A, Koll H, Regula JT, Bader M, Papadimitriou A, Kettenberger H. Developability assessment during the selection of novel therapeutic antibodies. Journal of Pharmaceutical Sciences. 2015;104(6):1885–98. doi:10.1002/jps.24430.
  • Chai Q, Shih J, Weldon C, Phan S, Jones BE. Development of a high-throughput solubility screening assay for use in antibody discovery. mAbs. 2019;11(4):747–56. doi:10.1080/19420862.2019.1589851.
  • Bethea D, Wu S-J, Luo J, Hyun L, Lacy ER, Teplyakov A, Jacobs SA, O’Neil KT, Gilliland GL, Feng Y. Mechanisms of self-association of a human monoclonal antibody CNTO607. Protein Engineering, Design and Selection. 2012;25(10):531–38. doi:10.1093/protein/gzs047.
  • Jacobs SA, Wu S-J, Feng Y, Bethea D, O’Neil KT. Cross-Interaction chromatography: a rapid method to identify highly soluble monoclonal antibody candidates. Pharmaceutical Research. 2010;27(1):65–71. doi:10.1007/s11095-009-0007-z.
  • Wu J, Schultz JS, Weldon CL, Sule SV, Chai Q, Geng SB, Dickinson CD, Tessier PM. Discovery of highly soluble antibodies prior to purification using affinity-capture self-interaction nanoparticle spectroscopy. Protein Engineering Design and Selection. 2015;28(10):403–14. doi:10.1093/protein/gzv045.
  • Sule SV, Dickinson CD, Lu J, Chow C-K, Tessier PM. Rapid analysis of antibody self-association in complex mixtures using immunogold conjugates. Molecular Pharmaceutics. 2013;10(4):1322–31. doi:10.1021/mp300524x.
  • Liu Y, Caffry I, Wu J, Geng SB, Jain T, Sun T, Reid F, Cao Y, Estep P, Yu Y, et al. High-throughput screening for developability during early-stage antibody discovery using self-interaction nanoparticle spectroscopy. mAbs. 2014;6(2):483–92. doi:10.4161/mabs.27431.
  • Sun T, Reid F, Liu Y, Cao Y, Estep P, Nauman C, Xu Y . High throughput detection of antibody self-interaction by bio-layer interferometry mAbs ;5(6):838–841. https://doi.org/10.4161/mabs.26186.
  • Kohli N, Jain N, Geddie ML, Razlog M, Xu L, Lugovskoy AA. A novel screening method to assess developability of antibody-like molecules. mAbs. 2015;7(4):752–58. doi:10.1080/19420862.2015.1048410.
  • Calero-Rubio C, Saluja A, Roberts CJ. Coarse-grained antibody models for “weak” protein–protein interactions from low to high concentrations. The Journal of Physical Chemistry B. 2016;120(27):6592–605. doi:10.1021/acs.jpcb.6b04907.
  • Calero-Rubio C, Ghosh R, Saluja A, Roberts CJ. Predicting protein-protein interactions of concentrated antibody solutions using dilute solution data and coarse-grained molecular models. Journal of Pharmaceutical Sciences. 2018;107(5):1269–81. doi:10.1016/j.xphs.2017.12.015.
  • Sharma VK, Patapoff TW, Kabakoff B, Pai S, Hilario E, Zhang B, Li C, Borisov O, Kelley RF, Chorny I , et al. In silico selection of therapeutic antibodies for development: viscosity, clearance, and chemical stability PNAS.2014 Nov. 111(52):18601–06. doi:10.1073/pnas.1421779112.
  • Yadav S, Laue TM, Kalonia DS, Singh SN, Shire SJ. The influence of charge distribution on self-association and viscosity behavior of monoclonal antibody solutions. Molecular Pharmaceutics. 2012;9(4):791–802. doi:10.1021/mp200566k.
  • Yadav S, Liu J, Shire SJ, Kalonia DS. Specific interactions in high concentration antibody solutions resulting in high viscosity. Journal Of Pharm Sci. Sciences P. 99(3):1152–68 Mar 2010. doi:10.1002/jps.21898.
  • Kingsbury JS, Saini A, Auclair SM, Fu L, Lantz MM, Halloran KT, Calero-Rubio C, Schwenger W, Airiau CY, Zhang J, et al. A single molecular descriptor to predict solution behavior of therapeutic antibodies. Science Advances. 2020;6(32). eabb0372. doi:10.1126/sciadv.abb0372.
  • Raybould MIJ, Marks C, Krawczyk K, Taddese B, Nowak J, Lewis AP, Bujotzek A, Shi J, Deane CM. Five computational developability guidelines for therapeutic antibody profiling. Proceedings of the National Academy of Sciences. 2019;116(10):4025–30. doi:10.1073/pnas.1810576116.
  • Alam ME, Geng SB, Bender C, Ludwig SD, Linden L, Hoet R, Tessier PM. Biophysical and sequence-based methods for identifying monovalent and bivalent antibodies with high colloidal stability. Molecular Pharmaceutics. 2018;15(1):150–63. doi:10.1021/acs.molpharmaceut.7b00779.
  • Agostini F, Vendruscolo M, Tartaglia GG. Sequence-Based Prediction of Protein Solubility. Journal of Molecular Biology. 2012;421(2–3):237–41. doi:10.1016/j.jmb.2011.12.005.
  • Pindrus M, Shire SJ, Kelley RF, Demeule B, Wong R, Xu Y, Yadav S. Solubility challenges in high concentration monoclonal antibody formulations: relationship with amino acid sequence and intermolecular interactions. Molecular Pharmaceutics. 2015;12(11):3896–907. doi:10.1021/acs.molpharmaceut.5b00336.
  • Dzisoo AM, He B, Karikari R, Agoalikum E, Cisi: HJ. A tool for predicting cross-interaction or self-interaction of monoclonal antibodies using sequences. Interdisciplinary Sciences: Computational Life Sciences. 2019;11(4):691–97. doi:10.1007/s12539-019-00330-1.
  • Chennamsetty N, Voynov V, Kayser V, Helk B, Trout BL. Design of therapeutic proteins with enhanced stability Proceedings of the National Academy of Sciences. 2009;106(29):11937–42. doi:10.1073/pnas.0904191106.
  • Agrawal NJ, Helk B, Kumar S, Mody N, Sathish HA, Samra HS, Buck PM, Li L, Trout BL. Computational tool for the early screening of monoclonal antibodies for their viscosities. mAbs. 2016;8(1):43–48. doi:10.1080/19420862.2015.1099773.
  • Lauer TM, Agrawal NJ, Chennamsetty N, Egodage K, Helk B, Trout BL. Developability Index: a Rapid In Silico Tool for the Screening of Antibody Aggregation Propensity. Journal of Pharmaceutical Sciences. 2012;101(1):102–15. doi:10.1002/jps.22758.
  • Sormanni P, Amery L, Ekizoglou S, Vendruscolo M, Popovic B. Rapid and accurate in silico solubility screening of a monoclonal antibody library. Scientific Reports. 2017 [accessed 2018 Oct 2];7(1). doi:10.1038/s41598-017-07800-w
  • Hebditch M, Warwicker J. Charge and hydrophobicity are key features in sequence-trained machine learning models for predicting the biophysical properties of clinical-stage antibodies. PeerJ. 2019;7:e8199. doi:10.7717/peerj.8199.
  • Hebditch M, Roche A, Curtis RA, Warwicker J. Models for antibody behavior in hydrophobic interaction chromatography and in self-association. Journal of Pharmaceutical Sciences. 2019;108(4):1434–41. doi:10.1016/j.xphs.2018.11.035.
  • Sormanni P, Aprile FA, Vendruscolo M. The camsol method of rational design of protein mutants with enhanced solubility. Journal of Molecular Biology. 2015;427(2):478–90. doi:10.1016/j.jmb.2014.09.026.
  • Sankar K, Hoi KH, Yin Y, Ramachandran P, Andersen N, Hilderbrand A, McDonald P, Spiess C, Zhang Q. Prediction of methionine oxidation risk in monoclonal antibodies using a machine learning method. mAbs. 2018;10(8):1281–90. doi:10.1080/19420862.2018.1518887.
  • Tomar DS, Singh SK, Li L, Broulidakis MP, Kumar S. In silico prediction of diffusion interaction parameter (kD), a key indicator of antibody solution behaviors. Pharmaceutical Research. 2018 [accessed 2018 Oct 2];35(10). doi:10.1007/s11095-018-2466-6
  • Song M, Breneman CM, Bi J, Sukumar N, Bennett KP, Cramer S, Tugcu N. Prediction of protein retention times in anion-exchange chromatography systems using support vector regression. Journal of Chemical Information and Computer Sciences. 2002;42(6):1347–57. doi:10.1021/ci025580t.
  • Ladiwala A, Xia F, Luo Q, Breneman CM, Cramer SM. Investigation of protein retention and selectivity in HIC systems using quantitative structure retention relationship models. Biotechnology and Bioengineering. 2006;93(5):836–50. doi:10.1002/bit.20771.
  • Woo JA, Chen H, Snyder MA, Chai Y, Frost RG, Cramer SM. Defining the property space for chromatographic ligands from a homologous series of mixed-mode ligands. Journal of Chromatography A. 2015;1407:58–68. doi:10.1016/j.chroma.2015.06.017.
  • Robinson JR, Karkov HS, Woo JA, Krogh BO, Cramer SM. QSAR models for prediction of chromatographic behavior of homologous Fab variants: QSAR Models for Fab Variants. Biotechnology and Bioengineering. 2017;114(6):1231–40. doi:10.1002/bit.26236.
  • Robinson JR, Karkov HS, Woo JA, Krogh BO, Cramer SM. QSAR models for prediction of chromatographic behavior of homologous fab variants: qsar models for fab variants. Biotechnology and Bioengineering. 2017;114(6):1231–1240. doi:10.1002/bit.26236
  • Bauer KC, Hämmerling F, Kittelmann J, Dürr C, Görlich F, Hubbuch J. Influence of structure properties on protein–protein interactions—QSAR modeling of changes in diffusion coefficients. Biotechnology and Bioengineering. 2017;114(4):821–31. doi:10.1002/bit.26210.
  • Alexander DLJ, Tropsha A, Winkler DA. Beware of R 2: simple, Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR Models. Journal of Chemical Information and Modeling. 2015;55(7):1316–22. doi:10.1021/acs.jcim.5b00206.
  • Datta-Mannan A, Estwick S, Zhou C, Choi H, Douglass NE, Witcher DR, Lu J, Beidler C, Millican R. Influence of physiochemical properties on the subcutaneous absorption and bioavailability of monoclonal antibodies. mAbs. 2020;12(1):1770028. doi:10.1080/19420862.2020.1770028.
  • Tilegenova C, Izadi S, Yin J, Huang CS, Wu J, Ellerman D, Hymowitz SG, Walters B, Salisbury C, Carter PJ. Dissecting the molecular basis of high viscosity of monospecific and bispecific IgG antibodies. mAbs. 2020;12(1):1692764. doi:10.1080/19420862.2019.1692764.
  • Heads JT, Lamb R, Kelm S, Adams R, Elliott P, Tyson K, Topia S, West S, Nan R, Turner A, et al. Electrostatic interactions modulate the differential aggregation propensities of IgG1 and IgG4P antibodies and inform charged residue substitutions for improved developability. Protein Engineering, Design and Selection. 2019;32(6):277–88. doi:10.1093/protein/gzz046.
  • Oeller M, Sormanni P, Vendruscolo M. An open-source automated PEG precipitation assay to measure the relative solubility of proteins with low material requirement. Scientific Reports. 2021;11(1):21932. doi:10.1038/s41598-021-01126-4.
  • Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research. 2004;32(Web Server):W665–W667. doi:10.1093/nar/gkh381.
  • Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: application to microtubules and the ribosome Proceedings of the National Academy of Sciences. 2001;98(18):10037–41. doi:10.1073/pnas.181342398.
  • Doucet JP, Panaye A. Three dimensional QSAR: applications in pharmacology and toxicology. Boca Raton: CRC Press. 2010. doi:10.1201/b10419.
  • Veerasamy R, Rajak H, Jain A, Sivadasan S, Varghese CP, Agrawal RK. Validation of QSAR models - strategies and importance.: 9.