4,056
Views
7
CrossRef citations to date
0
Altmetric
Report

Novel super-neutralizing antibody UT28K is capable of protecting against infection from a wide variety of SARS-CoV-2 variants

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , , , ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2072455 | Received 20 Mar 2022, Accepted 27 Apr 2022, Published online: 11 May 2022

References

  • Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. The New England Journal of Medicine. 2020;382(13):1199–11. doi:10.1056/NEJMoa2001316.
  • Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi:10.1016/S0140-6736(20)30183-5.
  • Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–69. doi:10.1001/jama.2020.1585.
  • Yao H, Song Y, Chen Y, Wu N, Xu J, Sun C, Zhang J, Weng T, Zhang Z, Wu Z, et al. Molecular architecture of the SARS-CoV-2 virus. Cell. 2020;183(3):730–8 e13. doi:10.1016/j.cell.2020.09.018.
  • Turonova B, Sikora M, Schurmann C, Hagen WJH, Welsch S, Blanc FEC, von Bulow S, Gecht M, Bagola K, Horner C, et al. In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges. Sci. 2020;370(6513):203–08. doi:10.1126/science.abd5223.
  • Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Sci. 2020;367(6483):1260–63. doi:10.1126/science.abb2507.
  • Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A, Li F. Structural basis of receptor recognition by SARS-CoV-2. Nat. 2020;581(7807):221–24. doi:10.1038/s41586-020-2179-y.
  • Andreano E, Nicastri E, Paciello I, Pileri P, Manganaro N, Piccini G, Manenti A, Pantano E, Kabanova A, Troisi M, et al. Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell. 2021;184(7):1821–35 e16. doi:10.1016/j.cell.2021.02.035.
  • Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M, Silacci-Fregni C, Pinto D, Rosen LE, Bowen JE, et al. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell. 2020;183(4):1024–42 e21. doi:10.1016/j.cell.2020.09.037.
  • Baum A, Ajithdoss D, Copin R, Zhou A, Lanza K, Negron N, Ni M, Wei Y, Mohammadi K, Musser B, et al. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Sci. 2020;370(6520):1110–15. doi:10.1126/science.abe2402.
  • Cathcart AL, Havenar-Daughton C, Lempp FA, Ma D, Schmid MA, Agostini ML, Guarino B, Di Iulio J, Rosen LE, Tucker H, et al. The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2. bioRxiv 2021:2021.03.09.434607. doi:10.1101/2021.03.09.434607
  • Gottlieb RL, Nirula A, Chen P, Boscia J, Heller B, Morris J, Huhn G, Cardona J, Mocherla B, Stosor V, et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. JAMA. 2021;325(7):632–44. doi:10.1001/jama.2021.0202.
  • Hansen J, Baum A, Pascal KE, Russo V, Giordano S, Wloga E, Fulton BO, Yan Y, Koon K, Patel K, et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Sci. 2020;369(6506):1010–14. doi:10.1126/science.abd0827.
  • Zost SJ, Gilchuk P, Case JB, Binshtein E, Chen RE, Nkolola JP, Schafer A, Reidy JX, Trivette A, Nargi RS, et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nat. 2020;584(7821):443–49. doi:10.1038/s41586-020-2548-6.
  • Cherian S, Potdar V, Jadhav S, Yadav P, Gupta N, Das M, Rakshit P, Singh S, Abraham P, Panda S. Convergent evolution of SARS-CoV-2 spike mutations. L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra. India: bioRxiv 2021:2021.04.22.440932. doi:10.1101/2021.04.22.440932
  • Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD, Pearson CAB, Russell TW, Tully DC, Washburne AD, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Sci. 2021;373(6553):372. doi:10.1126/science.abg3055.
  • Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, Doolabh D, Pillay S, San EJ, Msomi N, et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv 2020:2020.12.21.20248640. doi:10.1101/2020.12.21.20248640
  • Volz E, Mishra S, Chand M, Barrett JC, Johnson R, Geidelberg L, Hinsley WR, Laydon DJ, Dabrera G, O’Toole Á, et al. Transmission of SARS-CoV-2 lineage B.1.1.7 in England: insights from linking epidemiological and genetic data. medRxiv 2021:2020.12.30.20249034. doi:10.1101/2020.12.30.20249034
  • Wilhelm A, Widera M, Grikscheit K, Toptan T, Schenk B, Pallas C, Metzler M, Kohmer N, Hoehl S, Helfritz FA, et al. Reduced neutralization of SARS-CoV-2 omicron variant by vaccine sera and monoclonal antibodies. medRxiv 2021:2021.12.07.21267432. doi:10.1101/2021.12.07.21267432
  • Cameroni E, Bowen JE, Rosen LE, Saliba C, Zepeda SK, Culap K, Pinto D, VanBlargan LA, De Marco A, Di Iulio J, et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nat. 2022;602(7898):664–70. doi:10.1038/s41586-021-04386-2.
  • Cao YR, Wang J, Jian F, Xiao T, Song W, Yisimayi A, Huang W, Li Q, Wang P, An R, et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. bioRxiv 2021:2021.12.07.470392. doi:10.1101/2021.12.07.470392.
  • Iketani S, Liu L, Guo Y, Liu L, Chan JF, Huang Y, Wang M, Luo Y, Yu J, Chu H, et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nat. 2022;604(7906):553–56. doi:10.1038/s41586-022-04594-4.
  • Onodera T, Kita S, Adachi Y, Moriyama S, Sato A, Nomura T, Sakakibara S, Inoue T, Tadokoro T, Anraku Y, et al. A SARS-CoV-2 antibody broadly neutralizes SARS-related coronaviruses and variants by coordinated recognition of a virus-vulnerable site. Immunity. 2021;54(10):2385–2398.e10. doi:10.1016/j.immuni.2021.08.025.
  • Starr TN, Czudnochowski N, Liu Z, Zatta F, Park YJ, Addetia A, Pinto D, Beltramello M, Hernandez P, Greaney AJ, et al. SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nat. 2021;597(7874):97–102. doi:10.1038/s41586-021-03807-6.
  • Tortorici MA, Czudnochowski N, Starr TN, Marzi R, Walls AC, Zatta F, Bowen JE, Jaconi S, Di Iulio J, Wang Z, et al. Broad sarbecovirus neutralization by a human monoclonal antibody. Nat. 2021;597(7874):103–08. doi:10.1038/s41586-021-03817-4.
  • Tani H, Kimura M, Tan L, Yoshida Y, Ozawa T, Kishi H, Fukushi S, Saijo M, Sano K, Suzuki T, et al. Evaluation of SARS-CoV-2 neutralizing antibodies using a vesicular stomatitis virus possessing SARS-CoV-2 spike protein. Virol J. 2021;18(1):16. doi:10.1186/s12985-021-01490-7.
  • Jin A, Ozawa T, Tajiri K, Obata T, Kishi H, Muraguchi A. Rapid isolation of antigen-specific antibody-secreting cells using a chip-based immunospot array. Nat Protoc. 2011;6(5):668–76. doi:10.1038/nprot.2011.322.
  • Jin A, Ozawa T, Tajiri K, Obata T, Kondo S, Kinoshita K, Kadowaki S, Takahashi K, Sugiyama T, Kishi H, et al. A rapid and efficient single-cell manipulation method for screening antigen-specific antibody–secreting cells from human peripheral blood. Nat Med. 2009;15(9):1088–92. doi:10.1038/nm.1966.
  • Yamada H, Sasaki S, Tani H, Somekawa M, Kawasuji H, Saga Y, Yoshida Y, Yamamoto Y, Hayakawa Y, Morinaga Y. A novel hamster model of SARS-CoV-2 respiratory infection using a pseudotyped virus. bioRxiv 2021:2021.09.17.460745. doi:10.1101/2021.09.17.460745
  • Robbiani DF, Gaebler C, Muecksch F, Lorenzi JCC, Wang Z, Cho A, Agudelo M, Barnes CO, Gazumyan A, Finkin S, et al. Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nat. 2020;584(7821):437–42. doi:10.1038/s41586-020-2456-9.
  • Yuan M, Liu H, Wu NC, Lee CD, Zhu X, Zhao F, Huang D, Yu W, Hua Y, Tien H, et al. Structural basis of a shared antibody response to SARS-CoV-2. Sci. 2020;369:1119–23. doi:10.1126/science.abd2321.
  • Dong J, Zost SJ, Greaney AJ, Starr TN, Dingens AS, Chen EC, Chen RE, Case JB, Sutton RE, Gilchuk P, et al. Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nat Microbiol. 2021;6(10):1233–44. doi:10.1038/s41564-021-00972-2.
  • Tortorici MA, Beltramello M, Lempp FA, Pinto D, Dang HV, Rosen LE, McCallum M, Bowen J, Minola A, Jaconi S, et al. Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Sci. 2020;370(6519):950–57. doi:10.1126/science.abe3354.
  • Dejnirattisai W, Zhou D, Ginn HM, Duyvesteyn HME, Supasa P, Case JB, Zhao Y, Walter TS, Mentzer AJ, Liu C, et al. The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell. 2021;184(8):2183–200 e22. doi:10.1016/j.cell.2021.02.032.
  • Wang L, Zhou T, Zhang Y, Yang ES, Schramm CA, Shi W, Pegu A, Oloniniyi OK, Henry AR, Darko S, et al. Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants. Sci. 2021;373(6553):373. doi:10.1126/science.abh1766.
  • Brouwer PJM, Caniels TG, van der Straten K, Snitselaar JL, Aldon Y, Bangaru S, Torres JL, Okba NMA, Claireaux M, Kerster G, et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Sci. 2020;369(6504):643–50. doi:10.1126/science.abc5902.
  • Sui J, Hwang WC, Perez S, Wei G, Aird D, Chen LM, Santelli E, Stec B, Cadwell G, Ali M, et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol. 2009;16(3):265–73. doi:10.1038/nsmb.1566.
  • Wheatley AK, Whittle JR, Lingwood D, Kanekiyo M, Yassine HM, Ma SS, Narpala SR, Prabhakaran MS, Matus-Nicodemos RA, Bailer RT, et al. H5N1 vaccine-elicited memory B cells are genetically constrained by the IGHV locus in the recognition of a neutralizing epitope in the hemagglutinin stem. J Immunol. 2015;195(2):602–10. doi:10.4049/jimmunol.1402835.
  • Kreer C, Zehner M, Weber T, Ercanoglu MS, Gieselmann L, Rohde C, Halwe S, Korenkov M, Schommers P, Vanshylla K, et al. Longitudinal isolation of potent near-germline SARS-CoV-2-neutralizing antibodies from COVID-19 patients. Cell. 2020;182(4):843–54 e12. doi:10.1016/j.cell.2020.06.044.
  • Schmitz AJ, Turner JS, Liu Z, Aziati ID, Chen RE, Joshi A, Bricker TL, Darling TL, Adelsberg DC, Alsoussi WB, et al. A public vaccine-induced human antibody protects against SARS-CoV-2 and emerging variants. bioRxiv 2021:2021.03.24.436864. doi:10.1101/2021.03.24.436864
  • Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S, Schaefer-Babajew D, Cipolla M, Gaebler C, Lieberman JA, et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nat. 2021. doi:10.1038/s41586-021-03324-6.
  • Pan R, Qin Y, Banasik M, Lees W, Shepherd AJ, Cho MW, Kong XP. Increased epitope complexity correlated with antibody affinity maturation and a novel binding mode revealed by structures of rabbit antibodies against the third variable loop (V3) of HIV-1 gp120. J Virol. 2018:92. doi:10.1128/JVI.01894-17.
  • Qin Y, Banerjee S, Agrawal A, Shi H, Banasik M, Lin F, Rohl K, LaBranche C, Montefiori DC, Cho MW. Characterization of a large panel of rabbit monoclonal antibodies against HIV-1 gp120 and isolation of novel neutralizing antibodies against the V3 loop. PLoS One. 2015;10(6):e0128823. doi:10.1371/journal.pone.0128823.
  • Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nat. 2020;581(7807):215–20. doi:10.1038/s41586-020-2180-5.
  • Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Sci. 2020;367(6485):1444–48. doi:10.1126/science.abb2762.
  • Yi C, Sun X, Ye J, Ding L, Liu M, Yang Z, Lu X, Zhang Y, Ma L, Gu W, et al. Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cell Mol Immunol. 2020;17(6):621–30. doi:10.1038/s41423-020-0458-z.
  • Zhang X, Zheng M, Liang T, Zhou H, Wang H, Zhang J, Ren J, Peng H, Li S, Bian H, et al. Inhibitor screening of spike variants reveals the heterogeneity of neutralizing antibodies to COVID-19 infection and vaccination. medRxiv 2021:2021.05.15.21257254. doi:10.1101/2021.05.15.21257254
  • Prabakaran P, Chowdhury PS. Landscape of non-canonical cysteines in human VH repertoire revealed by immunogenetic analysis. Cell Rep. 2020;31(13):107831. doi:10.1016/j.celrep.2020.107831.
  • Morinaga Y, Tani H, Terasaki Y, Nomura S, Kawasuji H, Shimada T, Igarashi E, Saga Y, Yoshida Y, Yasukochi R, et al. Correlation of the commercial anti-SARS-CoV-2 receptor binding domain antibody test with the chemiluminescent reduction neutralizing test and possible detection of antibodies to emerging variants. Microbiol Spectr. 2021;9(3):e0056021. doi:10.1128/Spectrum.00560-21.
  • Tani H, Shiokawa M, Kaname Y, Kambara H, Mori Y, Abe T, Moriishi K, Matsuura Y. Involvement of ceramide in the propagation of Japanese encephalitis virus. J Virol. 2010;84(6):2798–807. doi:10.1128/JVI.02499-09.
  • Zaimoku Y, Takamatsu H, Hosomichi K, Ozawa T, Nakagawa N, Imi T, Maruyama H, Katagiri T, Kishi H, Tajima A, et al. Identification of an HLA class I allele closely involved in the autoantigen presentation in acquired aplastic anemia. Blood. 2017;129(21):2908–16. doi:10.1182/blood-2016-11-752378.
  • Ozawa T, Ouhara K, Tsuda R, Munenaga S, Kurihara H, Kohno H, Hamana H, Kobayashi E, Taki H, Tobe K, et al. Physiologic target, molecular evolution, and pathogenic functions of a monoclonal anti-citrullinated protein antibody obtained from a patient with rheumatoid arthritis. Arthritis Rheumatol. 2020;72(12):2040–49. doi:10.1002/art.41426.
  • Ozawa T, Masaki H, Takasaki T, Aoyama I, Yumisashi T, Yamanaka A, Konishi E, Ohnuki Y, Muraguchi A, Kishi H. Human monoclonal antibodies against West Nile virus from Japanese encephalitis-vaccinated volunteers. Antiviral Res. 2018;154:58–65. doi:10.1016/j.antiviral.2018.04.011.
  • Brochet X, Lefranc MP, Giudicelli V. IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis. Nucleic Acids Res. 2008;36(Web Server):W503–8. doi:10.1093/nar/gkn316.
  • Evans P. Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr. 2006;62(1):72–82. doi:10.1107/S0907444905036693.
  • Kabsch W. Xds. Acta Crystallogr D Biol Crystallogr. 2010;66(2):125–32. doi:10.1107/S0907444909047337.
  • Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, et al. Overview of the CCP 4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 2011;67(4):235–42. doi:10.1107/S0907444910045749.
  • Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of coot. Acta Crystallogr D Biol Crystallogr. 2010;66(4):486–501. doi:10.1107/S0907444910007493.
  • Liebschner D, Afonine PV, Baker ML, Bunkoczi G, Chen VB, Croll TI, Hintze B, Hung LW, Jain S, McCoy AJ, et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol. 2019;75(10):861–77. doi:10.1107/S2059798319011471.
  • Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB 3rd, Snoeyink J, Richardson JS, et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 2007;35(Web Server):W375–83. doi:10.1093/nar/gkm216.
  • Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372(3):774–97. doi:10.1016/j.jmb.2007.05.022.
  • Scheres SH. RELION: implementation of a bayesian approach to cryo-EM structure determination. J Struct Biol. 2012;180(3):519–30. doi:10.1016/j.jsb.2012.09.006.
  • Zivanov J, Nakane T, Forsberg BO, Kimanius D, Hagen WJ, Lindahl E, Scheres SH. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife. 2018:7. doi:10.7554/eLife.42166.
  • Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods. 2017;14(4):331–32. doi:10.1038/nmeth.4193.
  • Rohou A, Grigorieff N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J Struct Biol. 2015;192(2):216–21. doi:10.1016/j.jsb.2015.08.008.
  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12. doi:10.1002/jcc.20084.
  • Itokawa K, Sekizuka T, Hashino M, Tanaka R, Kuroda M. Disentangling primer interactions improves SARS-CoV-2 genome sequencing by multiplex tiling PCR. PLoS One. 2020;15(9):e0239403. doi:10.1371/journal.pone.0239403.
  • Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25(14):1754–60. doi:10.1093/bioinformatics/btp324.
  • Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568–76. doi:10.1101/gr.129684.111.
  • Melero R, Sorzano COS, Foster B, Vilas JL, Martinez M, Marabini R, Ramirez-Aportela E, Sanchez-Garcia R, Herreros D, Del Cano L, et al. Continuous flexibility analysis of SARS-CoV-2 spike prefusion structures. IUCrJ. 2020;7. doi:10.1107/S2052252520012725.