3,844
Views
8
CrossRef citations to date
0
Altmetric
Report

High-throughput profiling of antibody self-association in multiple formulation conditions by PEG stabilized self-interaction nanoparticle spectroscopy

, , & ORCID Icon
Article: 2094750 | Received 01 Mar 2022, Accepted 23 Jun 2022, Published online: 13 Jul 2022

References

  • Shire SJ, Shahrokh Z, Liu J. Challenges in the development of high protein concentration formulations. J Pharm Sci. 2004 Jun;93(6):1390–16. doi:10.1002/jps.20079. PubMed PMID: 15124199.
  • Geng SB, Wittekind M, Vigil A, Tessier PM. Measurements of monoclonal antibody self-association are correlated with complex biophysical properties. Mol Pharm. 2016 May 2;13(5):1636–45. doi:10.1021/acs.molpharmaceut.6b00071. PubMed PMID: 27045771.
  • Wu J, Schultz JS, Weldon CL, Sule SV, Chai Q, Geng SB, Dickinson CD, Tessier PM. Discovery of highly soluble antibodies prior to purification using affinity-capture self-interaction nanoparticle spectroscopy. Protein Eng Des Sel. 2015 Oct;28(10):403–14. doi:10.1093/protein/gzv045. PubMed PMID: 26363633.
  • Liu Y, Caffry I, Wu J, Geng SB, Jain T, Sun T, Reid F, Cao Y, Estep P, Yu Y, et al. High-throughput screening for developability during early-stage antibody discovery using self-interaction nanoparticle spectroscopy. MAbs. 2014 Mar-Apr;6(2):483–92. doi:10.4161/mabs.27431. PubMed PMID: 24492294; PubMed Central PMCID: PMCPMC3984336.
  • Sule SV, Dickinson CD, Lu J, Chow CK, Tessier PM. Rapid analysis of antibody self-association in complex mixtures using immunogold conjugates. Mol Pharm. 2013 Apr 1;10(4):1322–31. doi:10.1021/mp300524x. PubMed PMID: 23383873.
  • Geng SB, Wu J, Alam ME, Schultz JS, Dickinson CD, Seminer CR, Tessier PM. Facile preparation of stable antibody-gold conjugates and application to affinity-capture self-interaction nanoparticle spectroscopy. Bioconjug Chem. 2016 Oct 19;27(10):2287–300. doi:10.1021/acs.bioconjchem.6b00207. PubMed PMID: 27494306.
  • Kingsbury JS, Saini A, Auclair SM, Fu L, Lantz MM, Halloran KT, Calero-Rubio C, Schwenger W, Airiau CY, Zhang J, et al. A single molecular descriptor to predict solution behavior of therapeutic antibodies. Sci Adv. 2020 Aug;6(32):eabb0372. doi:10.1126/sciadv.abb0372. PubMed PMID: 32923611; PubMed Central PMCID: PMCPMC7457339.
  • Bailly M, Mieczkowski C, Juan V, Metwally E, Tomazela D, Baker J, Uchida M, Kofman E, Raoufi F, Motlagh S, et al. Predicting antibody developability profiles through early stage discovery screening. MAbs. 2020 Jan-Dec;12(1):1743053. doi:10.1080/19420862.2020.1743053. PubMed PMID: 32249670; PubMed Central PMCID: PMCPMC7153844.
  • Jain T, Sun T, Durand S, Hall A, Houston NR, Nett JH, Sharkey B, Bobrowicz B, Caffry I, Yu Y, et al. Biophysical properties of the clinical-stage antibody landscape. Proc Natl Acad Sci USA. 2017 Jan 31;114(5):944–49. doi:10.1073/pnas.1616408114. PubMed PMID: 28096333; PubMed Central PMCID: PMCPMC5293111.
  • Jones HM, Zhang Z, Jasper P, Luo H, Avery LB, King LE, Neubert H, Barton HA, Betts AM, Webster R. A physiologically-based pharmacokinetic model for the prediction of monoclonal antibody pharmacokinetics from in vitro data. CPT Pharmacometrics Syst Pharmacol. 2019 Oct;8(10):738–47. doi:10.1002/psp4.12461. PubMed PMID: 31464379; PubMed Central PMCID: PMCPMC6813168.
  • Avery LB, Wade J, Wang M, Tam A, King A, Piche-Nicholas N, Kavosi MS, Penn S, Cirelli D, Kurz JC, et al. Establishing in vitro in vivo correlations to screen monoclonal antibodies for physicochemical properties related to favorable human pharmacokinetics. MAbs. 2018 Feb/Mar;10(2):244–55. doi:10.1080/19420862.2017.1417718. PubMed PMID: 29271699; PubMed Central PMCID: PMCPMC5825195.
  • Kelly RL, Sun T, Jain T, Caffry I, Yu Y, Cao Y, Lynaugh H, Brown M, Vasquez M, Wittrup KD, et al. High throughput cross-interaction measures for human IgG1 antibodies correlate with clearance rates in mice. MAbs. 2015;7(4):770–77. doi:10.1080/19420862.2015.1043503. PubMed PMID: 26047159; PubMed Central PMCID: PMCPMC4622737.
  • Mieczkowski C, Cheng A, Fischmann T, Hsieh M, Baker J, Uchida M, Raghunathan G, Strickland C, Fayadat-Dilman L. Characterization and modeling of reversible antibody self-association provide insights into behavior, prediction, and correction. Antibodies (Basel). 2021 Feb 15;10(1). doi:10.3390/antib10010008. PubMed PMID: 33671864; PubMed Central PMCID: PMCPMC7931086.
  • Chow CK, Allan BW, Chai Q, Atwell S, Lu J. Therapeutic antibody engineering to improve viscosity and phase separation guided by crystal structure. Mol Pharm. 2016 Mar 7;13(3):915–23. doi:10.1021/acs.molpharmaceut.5b00817. PubMed PMID: 26849155.
  • Starr CG, Makowski EK, Wu L, Berg B, Kingsbury JS, Gokarn YR, Tessier PM. Ultradilute measurements of self-association for the identification of antibodies with favorable high-concentration solution properties. Mol Pharm. 2021 Jul 5;18(7):2744–53. doi:10.1021/acs.molpharmaceut.1c00280. PubMed PMID: 34105965.
  • Geoghegan JC, Fleming R, Damschroder M, Bishop SM, Sathish HA, Esfandiary R. Mitigation of reversible self-association and viscosity in a human IgG1 monoclonal antibody by rational, structure-guided Fv engineering. MAbs. 2016 Jul;8(5):941–50. doi:10.1080/19420862.2016.1171444. PubMed PMID: 27050875; PubMed Central PMCID: PMCPMC4968137.
  • Falconer RJ. Advances in liquid formulations of parenteral therapeutic proteins. Biotechnol Adv. 2019 Nov 15;37(7):107412. doi:10.1016/j.biotechadv.2019.06.011. PubMed PMID: 31254660.
  • Chai Q, Shih J, Weldon C, Phan S, Jones BE. Development of a high-throughput solubility screening assay for use in antibody discovery. MAbs. 2019 May/Jun;11(4):747–56. doi:10.1080/19420862.2019.1589851. PubMed PMID: 30913963; PubMed Central PMCID: PMCPMC6601704.
  • Nivedhini Iswarya C, Kiruba Daniel SCG, Sivakumar M. Studies on l-histidine capped Ag and Au nanoparticles for dopamine detection. Mater Sci Eng C Mater Biol Appl. 2017 Jun 1;75:393–401. doi:10.1016/j.msec.2016.11.102. PubMed PMID: 28415477.
  • Zakaria HM, Shah A, Konieczny M, Hoffmann JA, Nijdam AJ, Reeves ME. Small molecule- and amino acid-induced aggregation of gold nanoparticles. Langmuir. 2013 Jun 25;29(25):7661–73. doi:10.1021/la400582v. PubMed PMID: 23718319.
  • Sicotte XB. Locally weighted linear regression (Loess). Data Blog. Data Science, Machine Learning and Statistics, implemented in Python; 2018.
  • William GJ. Loess: a nonparametric, graphical tool for depicting relationships between variables. Elect Stud. 2000;19:577–613.
  • Cleveland WS, Loader, C. Smoothing by local regression: principles and methods. In: Härdle W, Schimek MG, editors. Statistical theory and computational aspects of smoothing. Heidelberg: Physica-Verlag HD; 1996. p.10–49.
  • Heads JT, Lamb R, Kelm S, Adams R, Elliott P, Tyson K, Topia S, West S, Nan R, Turner A, et al. Electrostatic interactions modulate the differential aggregation propensities of IgG1 and IgG4P antibodies and inform charged residue substitutions for improved developability. Protein Eng Des Sel. 2019 Dec 31;32(6):277–88. doi:10.1093/protein/gzz046. PubMed PMID: 31868219; PubMed Central PMCID: PMCPMC7036597.
  • Arora J, Hu Y, Esfandiary R, Sathish HA, Bishop SM, Joshi SB, Middaugh CR, Volkin DB, Weis DD. Charge-mediated Fab-Fc interactions in an IgG1 antibody induce reversible self-association, cluster formation, and elevated viscosity. MAbs. 2016 Nov/Dec;8(8):1561–74. doi:10.1080/19420862.2016.1222342. PubMed PMID: 27560842; PubMed Central PMCID: PMCPMC5098451.