5,470
Views
4
CrossRef citations to date
0
Altmetric
Report

Mechanistic insights into the rational design of masked antibodies

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2095701 | Received 09 Mar 2022, Accepted 25 Jun 2022, Published online: 07 Jul 2022

References

  • Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016;13:273–16. doi:10.1038/nrclinonc.2016.25.
  • Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies. 2020;9:34. doi:10.3390/antib9030034.
  • Kintzing JR, Filsinger Interrante MV, Cochran JR. Emerging strategies for developing next-generation protein therapeutics for cancer treatment. Trends Pharmacol Sci. 2016;37:993–1008. doi:10.1016/j.tips.2016.10.005.
  • Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJT. The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov. 2010;9:325–38. doi:10.1038/nrd3003.
  • Polu KR, Lowman HB. Probody therapeutics for targeting antibodies to diseased tissue. Expert Opin Biol Ther. 2014;14:1049–53. doi:10.1517/14712598.2014.920814.
  • Kavanaugh WM. Antibody prodrugs for cancer. Expert Opin Biol Ther. 2020;20:163–71. doi:10.1080/14712598.2020.1699053.
  • Lin -W-W, Lu Y-C, Chuang C-H, Cheng T-L. Ab locks for improving the selectivity and safety of antibody drugs. J Biomed Sci. 2020;27:76. doi:10.1186/s12929-020-00652-z.
  • Desnoyers LR, Vasiljeva O, Richardson JH, Yang A, Menendez EEM, Liang TW, Wong C, Bessette PH, Kamath K, Moore SJ, et al. Tumor-specific activation of an EGFR-targeting probody enhances therapeutic index. Sci Transl Med. 2013;5:207ra144. doi:10.1126/scitranslmed.3006682.
  • Stroh M, Green M, Millard BL, Apgar JF, Burke JM, Garner W, Lu H, Lyman SK, Desnoyers LR, Richardson J, et al. Model‐informed drug development of the masked Anti‑PD‑L1 antibody CX‐072. Clin Pharmacol Ther. 2021;109:383–93. doi:10.1002/cpt.1985.
  • Erster O, Thomas JM, Hamzah J, Jabaiah AM, Getz JA, Schoep TD, Hall SS, Ruoslahti E, Daugherty PS. Site-Specific targeting of antibody activity in vivo mediated by disease-associated proteases. J Control Release. 2012;161:804–12. doi:10.1016/j.jconrel.2012.05.035.
  • Onuoha SC, Ferrari M, Sblattero D, Pitzalis C. Rational design of antirheumatic prodrugs specific for sites of inflammation. Arthritis Rheumatol. 2015;67:2661–72. doi:10.1002/art.39232.
  • Pai -C-CS, Simons DM, Lu X, Evans M, Wei J, Wang Y, Chen M, Huang J, Park C, Chang A, et al. Tumor-conditional anti-CTLA4 uncouples antitumor efficacy from immunotherapy-related toxicity. J Clin Invest. 2018;129:349–63. doi:10.1172/JCI123391.
  • Geiger M, Stubenrauch K-G, Sam J, Richter WF, Jordan G, Eckmann J, Hage C, Nicolini V, Freimoser-Grundschober A, Ritter M, et al. Protease-activation using anti-idiotypic masks enables tumor specificity of a folate receptor 1-T cell bispecific antibody. Nat Commun. 2020;11:3196. doi:10.1038/s41467-020-16838-w.
  • Panchal A, Seto P, Wall R, Hillier BJ, Zhu Y, Krakow J, Datt A, Pongo E, Bagheri A, Chen T-HT, et al. COBRATM: a highly potent conditionally active T cell engager engineered for the treatment of solid tumors. MAbs. 2020;12:1792130. doi:10.1080/19420862.2020.1792130.
  • Kim H, Gaynor A, Chen W. Tunable modulation of antibody‐antigen interaction by protease cleavage of protein M. Biotechnol Bioeng. 2019;116:2834–42. doi:10.1002/bit.27111.
  • Trang VH, Zhang X, Yumul RC, Zeng W, Stone IJ, Wo SW, Dominguez MM, Cochran JH, Simmons JK, Ryan MC, et al. A coiled-coil masking domain for selective activation of therapeutic antibodies. Nat Biotechnol. 2019;37:761–65. doi:10.1038/s41587-019-0135-x.
  • Wouters SFA, Wijker E, Merkx M. Optical control of antibody activity by using photocleavable bivalent peptide–DNA locks. ChemBioChem. 2019;20:2463–66. doi:10.1002/cbic.201900241.
  • Engelen W, Zhu K, Subedi N, Idili A, Ricci F, Tel J, Merkx M. Programmable bivalent peptide–DNA locks for PH-based control of antibody activity. ACS Cent Sci. 2020;6:22–31. doi:10.1021/acscentsci.9b00964.
  • Janssen BMG, Lempens EHM, Olijve LLC, Voets IK, van Dongen JLJ, de Greef TFA, Merkx M. Reversible blocking of antibodies using bivalent peptide–DNA conjugates allows protease-activatable targeting. Chem Sci. 2013;4:1442. doi:10.1039/c3sc22033h.
  • Chen I-J, Chuang C-H, Hsieh Y-C, Lu Y-C, Lin -W-W, Huang -C-C, Cheng T-C, Cheng Y-A, Cheng K-W, Wang Y-T, et al. Selective antibody activation through protease-activated pro-antibodies that mask binding sites with inhibitory domains. Sci Rep. 2017;7:11587. doi:10.1038/s41598-017-11886-7.
  • Lucchi R, Bentanachs J, Oller-Salvia B. The masking game: design of activatable antibodies and mimetics for selective therapeutics and cell control. ACS Cent Sci. 2021;7:724–38. doi:10.1021/acscentsci.0c01448.
  • Bleuez C, Koch WF, Urbach C, Hollfelder F, Jermutus L. Exploiting protease activation for therapy. Drug Discov Today. 2022;27:1743–54. doi:10.1016/j.drudis.2022.03.011.
  • Gunnoo SB, Finney HM, Baker TS, Lawson AD, Anthony DC, Davis BG. Creation of a gated antibody as a conditionally functional synthetic protein. Nat Commun. 2014;5:4388. doi:10.1038/ncomms5388.
  • Donaldson JM, Kari C, Fragoso RC, Rodeck U, Williams JC. Design and development of masked therapeutic antibodies to limit off-target effects: application to Anti-EGFR antibodies. Cancer Biol Ther. 2009;8:2147–52. doi:10.4161/cbt.8.22.9765.
  • Lu Y-C, Chuang C-H, Chuang K-H, Chen I-J, Huang B-C, Lee W-H, Wang H-E, Li -J-J, Cheng Y-A, Cheng K-W, et al. Specific activation of pro-infliximab enhances selectivity and safety of rheumatoid arthritis therapy. PLOS Biol. 2019;17:e3000286. doi:10.1371/journal.pbio.3000286.
  • Metz S, Panke C, Haas AK, Schanzer J, Lau W, Croasdale R, Hoffmann E, Schneider B, Auer J, Gassner C, et al. Bispecific antibody derivatives with restricted binding functionalities that are activated by proteolytic processing. Protein Eng Des Sel. 2012;25:571–80. doi:10.1093/protein/gzs064.
  • Ngambenjawong C, Sylvestre M, Gustafson HH, Pineda JMB, Pun SH. Reversibly switchable, PH-dependent peptide ligand binding via 3,5-Diiodotyrosine substitutions. ACS Chem Biol. 2018;13:995–1002. doi:10.1021/acschembio.8b00171.
  • Force T, Krause DS, Van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer. 2007;7:332–44. doi:10.1038/nrc2106.
  • Guglin M, Cutro R, Mishkin JD. Trastuzumab-Induced cardiomyopathy. J Card Fail. 2008;14:437–44. doi:10.1016/j.cardfail.2008.02.002.
  • Coelho M, Gauthier P, Pugnière M, Roquet F, Pèlegrin A, Navarro-Teulon I. Isolation and characterisation of a human anti-idiotypic ScFv used as a surrogate tumour antigen to elicit an Anti-HER-2/Neu humoral response in mice. Br J Cancer. 2004;90:2032–41. doi:10.1038/sj.bjc.6601825.
  • Alvarez-Rueda N, Ladjemi MZ, Béhar G, Corgnac S, Pugnière M, Roquet F, Bascoul-Mollevi C, Baty D, Pèlegrin A, Navarro-Teulon I. A llama single domain anti-idiotypic antibody mimicking HER2 as a Vaccine: immunogenicity and efficacy. Vaccine. 2009;27:4826–33. doi:10.1016/j.vaccine.2009.05.067.
  • Hsu EJ, Cao X, Moon B, Bae J, Sun Z, Liu Z, Y-X F. A cytokine receptor-masked IL2 prodrug selectively activates tumor-infiltrating lymphocytes for potent antitumor therapy. Nat Commun. 2021;12:2768. doi:10.1038/s41467-021-22980-w.
  • Skrombolas D, Sullivan M, Frelinger JG. Development of an Interleukin-12 fusion protein that is activated by cleavage with matrix metalloproteinase 9. J Interf Cytokine Res. 2019;39:233–45. doi:10.1089/jir.2018.0129.
  • Guo J, Liang Y, Xue D, Shen J, Cai Y, Zhu J, Fu Y-X, Peng H. Tumor-Conditional IL-15 pro-Cytokine reactivates anti-tumor immunity with limited toxicity. Cell Res. 2021;31:1190–98. doi:10.1038/s41422-021-00543-4.
  • Ravn P, Madhurantakam C, Kunze S, Matthews E, Priest C, O’Brien S, Collinson A, Papworth M, Fritsch-Fredin M, Jermutus L, et al. Structural and pharmacological characterization of novel potent and selective monoclonal antibody antagonists of glucose-dependent insulinotropic polypeptide receptor. J Biol Chem. 2013;288:19760–72. doi:10.1074/jbc.M112.426288.
  • Krishnamurthy VM, Semetey V, Bracher PJ, Shen N, Whitesides GM. Dependence of effective molarity on linker length for an intramolecular protein−ligand system. Journal of the American Chemical Society. 2007;129:1312–20. doi:10.1021/ja066780e.
  • Ram S, Kim D, Ober RJ, Ward ES. The level of HER2 expression is a predictor of antibody-HER2 trafficking behavior in cancer cells. MAbs. 2014;6:1211–19. doi:10.4161/mabs.29865.
  • Dobson CL, Devine PWA, Phillips JJ, Higazi DR, Lloyd C, Popovic B, Arnold J, Buchanan A, Lewis A, Goodman J, et al. Engineering the surface properties of a human monoclonal antibody prevents self-association and rapid clearance in vivo. Sci Rep. 2016;6:38644. doi:10.1038/srep38644.
  • Kim M, Sun Z-YJ, Rand KD, Shi X, Song L, Cheng Y, Fahmy AF, Majumdar S, Ofek G, Yang Y, et al. Antibody mechanics on a membrane-bound HIV segment essential for GP41-targeted viral neutralization. Nat Struct Mol Biol. 2011;18:1235–43. doi:10.1038/nsmb.2154.
  • Cho H-S, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW, Leahy DJ. Structure of the extracellular region of HER2 alone and in complex with the herceptin fab. Nature. 2003;421:756–60. doi:10.1038/nature01392.
  • Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline State. J Mol Biol. 2007;372:774–97. doi:10.1016/j.jmb.2007.05.022.
  • Daramola O, Stevenson J, Dean G, Hatton D, Pettman G, Holmes W, Field R. A High-Yielding CHO transient system: coexpression of genes encoding EBNA-1 and GS enhances transient protein expression. Biotechnol Prog. 2014;30:132–41. doi:10.1002/btpr.1809.
  • Webster CI, Hatcher J, Burrell M, Thom G, Thornton P, Gurrell I, Chessell I. Enhanced delivery of IL-1 receptor antagonist to the central nervous system as a novel anti-transferrin receptor-IL-1RA fusion reverses neuropathic mechanical hypersensitivity. Pain. 2017;158:660–68. doi:10.1097/j.pain.0000000000000810.
  • Schiettecatte J, Anckaert E, and Smitz J. Interferences in immunoassays. In: Chiu NHL, Christopoulos TK, editors. Advances in Immunoassay Technology. Rijeka: InTech; 2012. p. 45–62.
  • Tate J, Ward G, Hansel TT, Kropshofer H, Singer T, Mitchell JA. Interferences in Immunoassay. Clin Biochem Rev. 2004;25:105–20.
  • Fernando SA, Wilson GS. Studies of the ‘Hook’ effect in the one-step sandwich immunoassay. J Immunol Methods. 1992;151:47–66. doi:10.1016/0022-1759(92)90104-2.
  • Vonrhein C, Flensburg C, Keller P, Sharff A, Smart O, Paciorek W, Womack T, Bricogne G. Data processing and analysis with the AutoPROC Toolbox. Acta Crystallogr Sect D Biol Crystallogr. 2011;67:293–302. IUCr. doi:10.1107/S0907444911007773.
  • McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr. 2007;40:658–74. IUCr. doi:10.1107/S0021889807021206.
  • Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr Sect D Biol Crystallogr. 2010;66:486–501. IUCr. doi:10.1107/S0907444910007493.
  • Murshudov GN, Skubák P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA. REFMAC 5 for the refinement of macromolecular crystal structures. Acta Crystallogr Sect D Biol Crystallogr. 2011;67:355–67. IUCr. doi:10.1107/S0907444911001314.
  • Bricogne G, Blanc E, Brandl M, Flensburg C, Keller P, Paciorek W, Roversi P, Smart OS, Vonrhein C, Womack TO. BUSTER Version 2.8.0. Cambridge, United Kindgom Glob Phasing Ltd. 2009