3,128
Views
2
CrossRef citations to date
0
Altmetric
Report

The impact of forced degradation conditions on mAb dimer formation and subsequent influence on aggregation propensity

ORCID Icon, , , &
Article: 2127172 | Received 26 May 2022, Accepted 16 Sep 2022, Published online: 05 Oct 2022

References

  • R-M L, Hwang Y-C, Liu IJ, Lee -C-C, Tsai H-Z, Li H-J, Wu H-C. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;1:1. doi:10.1186/s12929-019-0592-z.
  • Mahler HC, Friess W, Grauschopf U, Kiese S. Protein aggregation: pathways, induction factors and analysis. J Pharm Sci. 2009;9(9):2909–16. doi:10.1002/jps.21566.
  • Schreiber G. Kinetic studies of protein-protein interactions. Curr Opin Struct Biol. 2002;1(1):41–47. doi:10.1016/s0959-440x(02)00287-7.
  • Zhang J, Woods C, He F, Han M, Treuheit MJ, Volkin DB. Structural changes and aggregation mechanisms of two different dimers of an IgG2 monoclonal antibody. Biochemistry. 2018;37(37):5466–79. doi:10.1021/acs.biochem.8b00575.
  • Deperalta G, Alvarez M, Bechtel C, Dong K, McDonald R, Ling V. Structural analysis of a therapeutic monoclonal antibody dimer by hydroxyl radical footprinting. mAbs. 2013;1(1):86–101. doi:10.4161/mabs.22964.
  • Kijanka G, Bee JS, Bishop SM, Que I, Löwik C, Jiskoot W. Fate of multimeric oligomers, submicron, and micron size aggregates of monoclonal antibodies upon subcutaneous injection in mice. J Pharm Sci. 2016;5(5):1693–704. doi:10.1016/j.xphs.2016.02.034.
  • Moussa EM, Panchal JP, Moorthy BS, Blum JS, Joubert MK, Narhi LO, Topp EM. Immunogenicity of therapeutic protein aggregates. J Pharm Sci. 2016;2(2):417–30. doi:10.1016/j.xphs.2015.11.002.
  • Filipe V, Jiskoot W, Basmeleh AH, Halim A, Schellekens H, Brinks V. Immunogenicity of different stressed IgG monoclonal antibody formulations in immune tolerant transgenic mice. mAbs. 2012;6(6):740–52. doi:10.4161/mabs.22066.
  • Alt N, Zhang TY, Motchnik P, Taticek R, Quarmby V, Schlothauer T, Beck H, Emrich T, Harris RJ. Determination of critical quality attributes for monoclonal antibodies using quality by design principles. Biologicals. 2016;5(5):291–305. doi:10.1016/j.biologicals.2016.06.005.
  • Courtois F, Agrawal NJ, Lauer TM, Trout BL. Rational design of therapeutic mAbs against aggregation through protein engineering and incorporation of glycosylation motifs applied to bevacizumab. mAbs. 2016;1(1):99–112. doi:10.1080/19420862.2015.1112477.
  • Lee CC, Perchiacca JM, Tessier PM. Toward aggregation-resistant antibodies by design. Trends Biotechnol. 2013;11(11):612–20. doi:10.1016/j.tibtech.2013.07.002.
  • Cloutier TK, Sudrik C, Mody N, Hasige SA, Trout BL. Molecular computations of preferential interactions of proline, arginine.HCl, and NaCl with IgG1 antibodies and their impact on aggregation and viscosity. mAbs. 2020;1(1):1816312. doi:10.1080/19420862.2020.1816312.
  • Roberts CJ. Protein aggregation and its impact on product quality. Curr Opin Biotechnol. 2014;30:211–17. doi:10.1016/j.copbio.2014.08.001.
  • Wang W, Roberts CJ. Protein aggregation – mechanisms, detection, and control. Int J Pharm. 2018;1:251–68. doi:10.1016/j.ijpharm.2018.08.043.
  • Plath F, Ringler P, Graff-Meyer A, Stahlberg H, Lauer ME, Rufer AC, A GM, Svergun D, Gellermann G, Finkler C, et al. Characterization of mAb dimers reveals predominant dimer forms common in therapeutic mAbs. mAbs. 2016;5(5):928–40. doi:10.1080/19420862.2016.1168960.
  • Gentiluomo L, Roessner D, Streicher W, Mahapatra S, Harris P, Frieß W. Characterization of native reversible self-association of a monoclonal antibody mediated by fab-fab interaction. J Pharm Sci. 2020;1(1):443–51. doi:10.1016/j.xphs.2019.09.021.
  • Luo Y, Raso SW, Gallant J, Steinmeyer C, Mabuchi Y, Lu Z, Entrican C, Rouse JC. Evidence for intermolecular domain exchange in the Fab domains of dimer and oligomers of an IgG1 monoclonal antibody. MAbs. 2017;6(6):916–26. doi:10.1080/19420862.2017.1331803.
  • Nishi H, Miyajima M, Wakiyama N, Kubota K, Hasegawa J, Uchiyama S, Fukui K. Fc domain mediated self-association of an IgG1 monoclonal antibody under a low ionic strength condition. J Biosci Bioeng. 2011;4(4):326–32. doi:10.1016/j.jbiosc.2011.06.017.
  • Liu B, Guo H, Xu J, Qin T, Xu L, Zhang J, Guo Q, Zhang D, Qian W, Li B, et al. Acid-induced aggregation propensity of nivolumab is dependent on the Fc. MAbs. 2016;6(6):1107–17. doi:10.1080/19420862.2016.1197443.
  • Arora J, Hu Y, Esfandiary R, Sathish HA, Bishop SM, Joshi SB, Middaugh CR, Volkin DB, Weis DD. Charge-mediated Fab-Fc interactions in an IgG1 antibody induce reversible self-association, cluster formation, and elevated viscosity. mAbs. 2016;8(8):1561–74. doi:10.1080/19420862.2016.1222342.
  • Nezlin R. Interactions between immunoglobulin G molecules. Immunol Lett. 2010;1(1–2):1–5. doi:10.1016/j.imlet.2010.06.006.
  • Le Basle Y, Chennell P, Tokhadze N, Astier A, Sautou V. Physicochemical stability of monoclonal antibodies: a review. J Pharm Sci. 2020;1:169–90. doi:10.1016/j.xphs.2019.08.009.
  • Nowak C, Cheung K, Dellatore JM, Katiyar S, Bhat A, Sun R, Ponniah J, Neill G, Mason A, Beck A B, et al. Forced degradation of recombinant monoclonal antibodies: a practical guide. mAbs. 2017;8(8):1217–30. doi:10.1080/19420862.2017.1368602.
  • Wang W, Roberts CJ. Non-Arrhenius protein aggregation. Aaps j. 2013;3(3):840–51. doi:10.1208/s12248-013-9485-3.
  • Hawe A, Kasper JC, Friess W, Jiskoot W. Structural properties of monoclonal antibody aggregates induced by freeze–thawing and thermal stress. Eur J Pharm Sci. 2009;2(2):79–87. doi:10.1016/j.ejps.2009.06.001.
  • Kayser V, Chennamsetty N, Voynov V, Helk B, Forrer K, Trout BL. Evaluation of a non-arrhenius model for therapeutic monoclonal antibody aggregation. J Pharm Sci. 2011;7(7):2526–42. doi:10.1002/jps.22493.
  • Chakroun N, Hilton D, Ahmad SS, Platt GW, Dalby PA. Mapping the aggregation kinetics of a therapeutic antibody fragment. Mol Pharm. 2016;2(2):307–19. doi:10.1021/acs.molpharmaceut.5b00387.
  • Moore JMR, Patapoff TW, Cromwell MEM. Kinetics and thermodynamics of dimer formation and dissociation for a recombinant humanized monoclonal antibody to vascular endothelial growth factor. Biochemistry. 1999;42(42):13960–67. doi:10.1021/bi9905516.
  • Yoshimura Y, Lin Y, Yagi H, Lee Y-H, Kitayama H, Sakurai K, So M, Ogi H, Naiki H, Goto Y Distinguishing crystal-like amyloid fibrils and glass-like amorphous aggregates from their kinetics of formation. Proceedings of the National Academy of Sciences. 2012; 36: 14446. doi: 10.1073/pnas.1208228109.
  • Sabate R, Espargaro A, Graña-Montes R, Reverter D, Ventura S. Native structure protects SUMO proteins from aggregation into amyloid fibrils. Biomacromolecules. 2012;6(6):1916–26. doi:10.1021/bm3004385.
  • Barnett GV, Qi W, Amin S, Lewis EN, Razinkov VI, Kerwin BA, Liu Y, Roberts CJ. Structural changes and aggregation mechanisms for anti-streptavidin IgG1 at elevated concentration. J Phys Chem B. 2015;49(49):15150–63. doi:10.1021/acs.jpcb.5b08748.
  • Davies M, Wang G, Fu G, Wang X. mAb higher order structure analysis with protein conformational array ELISA. J Pharm Res Int. 2015;6:401–12.
  • Iacob RE, Bou-Assaf GM, Makowski L, Engen JR, Berkowitz SA, Houde D. Investigating monoclonal antibody aggregation using a combination of H/DX-MS and other biophysical measurements. J Pharm Sci. 2013;12(12):4315–29. doi:10.1002/jps.23754.
  • Neris RLS, Kaur A, Gomes AV. Incorrect molecular weights due to inaccurate prestained protein molecular weight markers that are used for gel electrophoresis and western blotting. bioRxiv. 2020;2020: doi:10.1101/2020.04.03.023465.
  • Barth A. Infrared spectroscopy of proteins. Biochimica et biophysica acta (BBA. Bioenergetics. 2007;9:1073–101. doi:10.1016/j.bbabio.2007.06.004.
  • Cole JL, Lary JW, Moody PT, Laue TM. Analytical ultracentrifugation: sedimentation velocity and sedimentation equilibrium. Methods Cell Biol. 2008;143–79. doi:10.1016/S0091-679X(07)84006-4.
  • Demeler B. UltraScan - A comprehensive data analysis software package for analytical ultracentrifugation experiments. In: Scott DJ, Harding SE, Rowe AJ editors. Analytical ultracentrifugation: techniques and methods. United Kingdom: The Royal Society of Chemistry; 2005. p. 210–30.
  • Tian X, Langkilde AE, Thorolfsson M, Rasmussen HB, Vestergaard B. Small-angle x-ray scattering screening complements conventional biophysical analysis: comparative structural and biophysical analysis of monoclonal antibodies IgG1, IgG2, and IgG4. J Pharm Sci. 2014;6(6):1701–10. doi:10.1016/j.tibtech.2013.07.002.
  • Kikhney AG, Svergun DI. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett. 2015;19P(19PartA):2570–77. doi:10.1016/j.febslet.2015.08.027. artA
  • Rayner LE, Hui GK, Gor J, Heenan RK, Dalby PA, Perkins SJ. The solution structures of two human IgG1 antibodies show conformational stability and accommodate their C1q and FcγR ligands. J Biol Chem. 2015;13(13):8420–38. doi:10.1074/jbc.M114.631002.
  • Svergun DI. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J. 1999;6(6):2879–86. doi:10.1016/S0006-3495(99)77443-6.
  • Wang X, Li Q, Davies M. Development of antibody arrays for monoclonal antibody higher order structure analysis. Front Pharmacol. 2013;103: doi:10.3389/fphar.2013.00103.
  • Fu C, Zhang Z, Zhou S, Pritts WA, Zhang Q. Assessing localized conformational stability of antibody-drug conjugate by protein conformation assay. J Pharm Biomed Anal. 2020;179:113020. doi:10.1016/j.jpba.2019.113020.
  • Comeau SR, Kozakov D, Brenke R, Shen Y, Beglov D, Vajda S. ClusPro: performance in CAPRI rounds 6–11 and the new server. Proteins: structure, function, and bioinformatics. 2007;4:781–85. doi:10.1002/prot.21795.
  • Kozakov D, Hall DR, Xia B, Porter KA, Padhorny D, Yueh C, Beglov D, Vajda S. The ClusPro web server for protein-protein docking. Nat Protoc. 2017;2(2):255–78. doi:10.1038/nprot.2016.169.
  • Molecular Operating Environment (MOE), 2022. Chemical Computing Group ULC. Montreal, QC, Canada. https://www.chemcomp.com/Research-Citing_MOE.htm.
  • Conchillo-Solé O, de Groot NS, F.x A, Vendrell J, Daura X, Ventura S. AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinform. 2007;1(1):65. doi:10.1186/1471-2105-8-65.
  • Telikepalli SN, Kumru OS, Kalonia C, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions. J Pharm Sci. 2014;3(3):796–809. doi:10.1002/jps.23839.
  • Baird G, Farrell C, Cheung J, Semple A, Blue J, Ahl PL. FTIR spectroscopy detects intermolecular β-sheet formation above the high temperature tm for two monoclonal antibodies. Protein J. 2020;4(4):318–27. doi:10.1007/s10930-020-09907-y.
  • Paul R, Graff-Meyer A, Stahlberg H, Lauer ME, Rufer AC, Beck H, Briguet A, Schnaible V, Buckel T, Boeckle S. Structure and function of purified monoclonal antibody dimers induced by different stress conditions. Pharm Res. 2012;8(8):2047–59. doi:10.1007/s11095-012-0732-6.
  • Kim N, Remmele RL, Liu D, Razinkov VI, Fernandez EJ, Roberts CJ. Aggregation of anti-streptavidin immunoglobulin gamma‐1 involves Fab unfolding and competing growth pathways mediated by pH and salt concentration. Biophys Chem. 2013;172:26–36. doi:10.1016/j.bpc.2012.12.004.
  • Rouby G, Tran NT, Leblanc Y, Taverna M, Bihoreau N. Investigation of monoclonal antibody dimers in a final formulated drug by separation techniques coupled to native mass spectrometry. mAbs. 2020;1(1):1781743. doi:10.1080/19420862.2020.1781743.
  • Codina N, Hilton D, Zhang C, Chakroun N, Ahmad SS, Perkins SJ, Dalby PA. An expanded conformation of an antibody fab region by X-ray scattering Molecular Dynamics, and smFRET Identifies an Aggregation Mechanism. J Mol Biol. 2019;7:1409–25. doi:10.1016/j.jmb.2019.02.009.
  • Joubert MK, Luo Q, Nashed-Samuel Y, Wypych J, Narhi LO. Classification and characterization of therapeutic antibody aggregates. J Biol Chem. 2011;28(28):25118–33. doi:10.1074/jbc.M110.160457.
  • Barata TS, Zhang C, Dalby PA, Brocchini S, Zloh M. Identification of protein-excipient interaction hotspots using computational approaches. Int J Mol Sci. 2016;6(6):853. doi:10.3390/ijms17060853.
  • Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J. 2000;3(3):1606–19. doi:10.1016/s0006-3495(00)76713-0.
  • Brown PH, Schuck P. Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation. Biophys J. 2006;90(12):4651–61. doi:10.1529/biophysj.106.081372.
  • Ortega A, Amorós D, García de la Torre J. Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. Biophys J. 2011;4(4):892–98. doi:10.1016/j.bpj.2011.06.046.
  • Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1-2:19–25. doi:10.1016/j.softx.2015.06.001.
  • Robertson MJ, Tirado-Rives J, Jorgensen WL. Improved peptide and protein torsional energetics with the OPLS-AA force field. J Chem Theory Comput. 2015;11(7):3499–509. doi:10.1021/acs.jctc.5b00356.
  • Sørensen L, Salbo R. Optimized workflow for selecting peptides for HDX-MS data analyses. J Am Soc Mass Spectrom. 2018;11(11):2278–81. doi:10.1007/s13361-018-2056-1.
  • Lau AMC, Ahdash Z, Martens C, Politis A, Valencia A. Deuteros: software for rapid analysis and visualization of data from differential hydrogen deuterium exchange-mass spectrometry. Bioinformatics. 2019;17(17):3171–73. doi:10.1093/bioinformatics/btz022.