2,753
Views
0
CrossRef citations to date
0
Altmetric
Report

A competitive binding-mass spectrometry strategy for high-throughput evaluation of potential critical quality attributes of therapeutic monoclonal antibodies

, , &
Article: 2133674 | Received 25 Aug 2022, Accepted 03 Oct 2022, Published online: 12 Oct 2022

References

  • Torre BG, Albericio F. The pharmaceutical industry in 2020. An analysis of FDA drug approvals from the perspective of molecules. Molecules. 2021;26:627. PMID: 33504104. doi:10.3390/molecules26030627.
  • Krishnan M, Darling S. Meeting analytical challenges in a brave new world of next generation biotherapeutics. Drug Discovery. 2020;21:31–9.
  • Rogers RS, Abernathy M, Richardson DD, Rouse JC, Sperry JB, Swann P, Wypych J, Yu C, Zang L, Deshpande R. A view on the importance of “multi-attribute method” for measuring purity of biopharmaceuticals and improving overall control strategy. AAPS J. 2018;20(1):1–8. PMID: 29192343. doi:10.1208/s12248-017-0168-3.
  • Jefferis R. Posttranslational modifications and the immunogenicity of biotherapeutics. J Immunol Res. 2016;2016:5358272. PMID: 27191002. doi:10.1155/2016/5358272.
  • Jenkins N, Murphy L, Tyther R. Post-translational modifications of recombinant proteins: significance for biopharmaceuticals. Mol Biotechnol. 2008;39(2):113–18. PMID: 18327554. doi:10.1007/s12033-008-9049-4.
  • Moritz B, Stracke JO. Assessment of disulfide and hinge modifications in monoclonal antibodies. Electrophoresis. 2017;38(6):769–85. PMID: 27982442. doi:10.1002/elps.201600425.
  • Wang Q, Chung CY, Chough S, Betenbaugh MJ. Antibody glycoengineering strategies in mammalian cells. Biotechnol Bioeng. 2018;115:1378–93. PMID: 29457629. doi:10.1002/bit.26567.
  • Wang W, Singh S, Zeng DL, King K, Nema S. Antibody structure, instability, and formulation. J Pharm Sci. 2007;96:1–26. PMID: 16998873. doi:10.1002/jps.20727.
  • Beyer B, Schuster M, Jungbauer A, Lingg N. Microheterogeneity of recombinant antibodies: analytics and functional impact. Biotechnol J. 2018;13:1700476. PMID: 28862393. doi:10.1002/biot.201700476.
  • Hmiel LK, Brorson KA, Boyne MT. Post-translational structural modifications of immunoglobulin G and their effect on biological activity. Anal Bioanal Chem. 2015;407(1):79–94. PMID: 25200070. doi:10.1007/s00216-014-8108-x.
  • Li W, Kerwin JL, Schiel J, Formolo T, Davis D, Mahan A, Benchaar SA. Structural elucidation of post-translational modifications in monoclonal antibodies. State-of-the-art and emerging technologies for therapeutic monoclonal antibody characterization volume 2. Biopharm Character. 2015:119–83. doi:10.1021/bk-2015-1201.
  • Yan Y, Wei H, Fu Y, Jusuf S, Zeng M, Ludwig R, Krystek SR, Chen G, Tao L, Das TK. Isomerization and oxidation in the complementarity-determining regions of a monoclonal antibody: a study of the modification-structure-function correlations by hydrogen-deuterium exchange mass spectrometry. Anal Chem. 2016;88(4):2041–50. PMID: 26824491. doi:10.1021/acs.analchem.5b02800.
  • Saitoh S. The identification of Critical Quality Attributes (CQAs) for the development of antibody drugs. Yakugaku zasshi. 2018;138(12):1475–81. PMID: 30504661. doi:10.1248/yakushi.18-00020-1.
  • Fogel DB. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: a review. Contemp Clin Trials Commun. 2018;11:156–64. PMID: 30112460. doi:10.1016/j.conctc.2018.08.001.
  • Geigert J. The challenge of CMC regulatory compliance for biopharmaceuticals and other biologics. Springer. 2013. doi:10.1007/978-1-4614-6916-2.
  • Yan Y, Liu AP, Wang S, Daly TJ, Li N. Ultrasensitive characterization of charge heterogeneity of therapeutic monoclonal antibodies using strong cation exchange chromatography coupled to native mass spectrometry. Anal Chem. 2018;90(21):13013–20. PMID: 30280893. doi:10.1021/acs.analchem.8b03773.
  • Zhang Y, Martinez T, Woodruff B, Goetze A, Bailey R, Pettit D, Balland A. Hydrophobic interaction chromatography of soluble interleukin I receptor type II to reveal chemical degradations resulting in loss of potency. Anal Chem. 2008;80(18):7022–28. PMID: 18707131. doi:10.1021/ac800928z.
  • Fekete S, Veuthey J-L, Beck A, Guillarme D. Hydrophobic interaction chromatography for the characterization of monoclonal antibodies and related products. J Pharm Biomed Anal. 2016;130:3–18. PMID: 27084526. doi:10.1016/j.jpba.2016.04.004.
  • Wang S, Liu AP, Yan Y, Daly TJ, Li N. Characterization of product-related low molecular weight impurities in therapeutic monoclonal antibodies using hydrophilic interaction chromatography coupled with mass spectrometry. J Pharm Biomed Anal. 2018;154:468–75. PMID: 29587227. doi:10.1016/j.jpba.2018.03.034.
  • Kükrer B, Filipe V, van Duijn E, Kasper PT, Vreeken RJ, Heck AJ, Jiskoot W. Mass spectrometric analysis of intact human monoclonal antibody aggregates fractionated by size-exclusion chromatography. Pharm Res. 2010;27(10):2197–204. PMID: 20680668. doi:10.1007/s11095-010-0224-5.
  • Lu C, Liu D, Liu H, Motchnik P. Characterization of monoclonal antibody size variants containing extra light chains. MAbs. 2013;5(1):102–13. PMID: 23255003. doi:10.4161/mabs.22965.
  • Thiagarajan G, Widjaja E, Heo JH, Cheung JK, Wabuyele B, Mou X, Shameem M. Use of Raman and Raman optical activity for the structural characterization of a therapeutic monoclonal antibody formulation subjected to heat stress. J Raman Spectrosc. 2015;46(6):531–36. doi:10.1002/jrs.4679.
  • Bondarenko P, Nichols AC, Xiao G, Shi RL, Chan PK, Dillon TM, Garces F, Semin DJ, Ricci MS. Identification of critical chemical modifications and paratope mapping by size exclusion chromatography of stressed antibody-target complexes. MAbs. 2021;13(1):1887629. PMID: 33615991. doi:10.1080/19420862.2021.1887629.
  • Shi RL, Xiao G, Dillon TM, McAuley A, Ricci MS, Bondarenko PV. Identification of critical chemical modifications by size exclusion chromatography of stressed antibody-target complexes with competitive binding. MAbs. 2021;13(1):1887612. PMID: 33616001. doi:10.1080/19420862.2021.1887612.
  • Andersen JT, Dalhus B, Viuff D, Ravn BT, Gunnarsen KS, Plumridge A, Bunting K, Antunes F, Williamson R, Athwal S, et al. Extending serum half-life of albumin by engineering neonatal Fc receptor (FcRn) binding. J Biol Chem. 2014;289:13492–502. PMID: 24652290. doi:10.1074/jbc.M114.549832.
  • Stracke J, Emrich T, Rueger P, Schlothauer T, Kling L, Knaupp A, Hertenberger H, Wolfert A, Spick C, Lau W, et al. A novel approach to investigate the effect of methionine oxidation on pharmacokinetic properties of therapeutic antibodies. MAbs. 2014;6(5):1229–42. PMID: 25517308. doi:10.4161/mabs.29601.
  • Iida S, Misaka H, Inoue M, Shibata M, Nakano R, Yamane-Ohnuki N, Wakitani M, Yano K, Shitara K, Satoh M. Nonfucosylated therapeutic IgG1 antibody can evade the inhibitory effect of serum immunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to FcγRIIIa. Clin Cancer Res. 2006;12(9):2879–87. PMID: 16675584. doi:10.1158/1078-0432.CCR-05-2619.
  • Niwa R, Hatanaka S, Shoji-Hosaka E, Sakurada M, Kobayashi Y, Uehara A, Yokoi H, Nakamura K, Shitara K. Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 is independent of FcγRIIIa functional polymorphism. Clin Cancer Res. 2004;10(18):6248–55. PMID: 15448014. doi:10.1158/1078-0432.CCR-04-0850.
  • Yan Y, Xing T, Wang S, Li N. Versatile, sensitive, and robust native LC–MS platform for intact mass analysis of protein drugs. J Am Soc Mass Spectrom. 2020;31(10):2171–79. PMID: 32865416. doi:10.1021/jasms.0c00277.