6,026
Views
3
CrossRef citations to date
0
Altmetric
Review

Non-human primates in the PKPD evaluation of biologics: Needs and options to reduce, refine, and replace. A BioSafe White Paper

, , , , , , & show all
Article: 2145997 | Received 22 Jul 2022, Accepted 07 Nov 2022, Published online: 23 Nov 2022

References

  • ICH. Preclinical safety evaluation of biotechnology-derived pharmaceuticals s6 (r1). In. Preclinical safety evaluation of biotechnology-derived pharmaceuticals s6 (r1). Proceedings of the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use; 2011.
  • ICH. Guidance on nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals m3 (r2). In. Guidance on nonclinical safety studies for the conduct of human clinical trials and marketing authorization for pharmaceuticals m3 (r2). International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use; 2009.
  • Brennan FR, Cavagnaro J, McKeever K, Ryan PC, Schutten MM, Vahle J, Weinbauer GF, Marrer-Berger E, Black LE. Safety testing of monoclonal antibodies in non-human primates: case studies highlighting their impact on human risk assessment. MAbs. 2018;10(1):1–19. doi:10.1080/19420862.2017.1389364.
  • Baumann A, Prabhu S, Kanodia J. 2016. Use of pk/pd knowledge in guiding bispecific biologics research and development. In: Zhou I, Theil FP, editors. Use of pk/pd knowledge in guiding bispecific biologics research and development. Adme and translational pk/pd of thereapeutic proteins. Hoboken NJ, USA: Wiley; p. 1–13.
  • Horvath C, Andrews L, Baumann A, Black L, Blanset D, Cavagnaro J, Hastings KL, Hutto DL, MacLachlan TK, Milton M, et al. Storm forecasting: additional lessons from the cd28 superagonist tgn1412 trial. Nat Rev Immunol. 2012;12(10):740. author reply 740. doi:10.1038/nri3192-c1.
  • ICH. Nonclinical evaluation for anticancer pharmaceuticals s9. In. Nonclinical evaluation for anticancer pharmaceuticals s9. International Conference on Harmonization; 2009.
  • EMA. 2017. Guideline on strategies to identify and mitigate risks for first inhuman and early clinical trials with investigational medicinal products. In. Guideline on strategies to identify and mitigate risks for first‐in‐human and early clinical trials with investigational medicinal products. London, UK: Committee for Medicinal Products for Human Use (CHMP).
  • USFDA. 2019. Guidance for industry: severely debilitating or lifethreatening hematologic disorders: nonclinical development of pharmaceuticals. In. Guidance for industry: severely debilitating or lifethreatening hematologic disorders: nonclinical development of pharmaceuticals. Silver Spring, MD: Center for Drug Evaluation and Research (CDER).
  • USFDA. Guidance for industry: estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. In. Guidance for industry: estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. Center for Drug Evaluation and Research (CDER). 2005. https://www.fda.gov/media/72309/download
  • Elmeliegy M, Udata C, Liao K, Yin D. Considerations on the calculation of the human equivalent dose from toxicology studies for biologic anticancer agents. Clin Pharmacokinet. 2021;60(5):563–67. doi:10.1007/s40262-021-00987-2.
  • Leach MW, Clarke DO, Dudal S, Han C, Li C, Yang Z, Brennan FR, Bailey WJ, Chen Y, Deslandes A, et al. Strategies and recommendations for using a data-driven and risk-based approach in the selection of first-in-human starting dose: an international consortium for innovation and quality in pharmaceutical development (iq) assessment. Clin Pharmacol Ther. 2021;109(6):1395–415. doi:10.1002/cpt.2009.
  • Muller PY, Milton M, Lloyd P, Sims J, Brennan FR. The minimum anticipated biological effect level (mabel) for selection of first human dose in clinical trials with monoclonal antibodies. Curr Opin Biotechnol. 2009;20(6):722–29. doi:10.1016/j.copbio.2009.10.013.
  • Saber H, Gudi R, Manning M, Wearne E, Leighton JK. An fda oncology analysis of immune activating products and first-in-human dose selection. Regul Toxicol Pharmacol. 2016;81:448–456.
  • Saber H, Del Valle P, Ricks TK, Leighton JK. An fda oncology analysis of cd3 bispecific constructs and first-in-human dose selection. Regul Toxicol Pharmacol. 2017;90:144–152.
  • Kamath AV. Translational pharmacokinetics and pharmacodynamics of monoclonal antibodies. Drug Discov Today Technol. 2016;21–22:75–83.
  • Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–58. doi:10.1038/clpt.2008.170.
  • Deng R, Jin F, Prabhu S, Iyer S. Monoclonal antibodies: what are the pharmacokinetic and pharmacodynamic considerations for drug development? Expert Opin Drug Metab Toxicol. 2012;8(2):141–60. doi:10.1517/17425255.2012.643868.
  • Roopenian DC, Akilesh SF. The neonatal fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715–25. doi:10.1038/nri2155.
  • Garg A, Balthasar JP. Investigation of the influence of fcrn on the distribution of igg to the brain. Aaps j. 2009;11(3):553–57. doi:10.1208/s12248-009-9129-9.
  • Hansen RJ, Balthasar JP. Intravenous immunoglobulin mediates an increase in anti-platelet antibody clearance via the fcrn receptor. Thromb Haemost. 2002;88(6):898–99. doi:10.1055/s-0037-1613331.
  • Ober RJ, Radu CG, Ghetie V, Ward ES. Differences in promiscuity for antibody-fcrn interactions across species: implications for therapeutic antibodies. Int Immunol. 2001;13(12):1551–59. doi:10.1093/intimm/13.12.1551.
  • Andersen JT, Daba MB, Berntzen G, Michaelsen TE, Sandlie I. Cross-species binding analyses of mouse and human neonatal fc receptor show dramatic differences in immunoglobulin g and albumin binding. J Biol Chem. 2010;285(7):4826–36. doi:10.1074/jbc.M109.081828.
  • Avery LB, Wang M, Kavosi MS, Joyce A, Kurz JC, Fan YY, Dowty ME, Zhang M, Zhang Y, Cheng A, et al. Utility of a human fcrn transgenic mouse model in drug discovery for early assessment and prediction of human pharmacokinetics of monoclonal antibodies. MAbs. 2016;8(6):1064–78. doi:10.1080/19420862.2016.1193660.
  • Proetzel G, Roopenian DC. Humanized fcrn mouse models for evaluating pharmacokinetics of human igg antibodies. Methods. 2014;65(1):148–53. doi:10.1016/j.ymeth.2013.07.005.
  • Betts A, Keunecke A, van Steeg Tj, van der Graaf Ph, Avery LB, Jones H, Berkhout J. Linear pharmacokinetic parameters for monoclonal antibodies are similar within a species and across different pharmacological targets: a comparison between human, cynomolgus monkey and hfcrn tg32 transgenic mouse using a population-modeling approach. MAbs. 2018;10(5):751–64. doi:10.1080/19420862.2018.1462429.
  • Jefferis R. Glycosylation of natural and recombinant antibody molecules. Adv Exp Med Biol. 2005;564:143–148.
  • Sinclair AM, Elliott S. Glycoengineering:The effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci. 2005;94(8):1626–35. doi:10.1002/jps.20319.
  • Jones AJ, Papac DI, Chin EH, Keck R, Baughman SA, Lin YS, Kneer J, Battersby JE. Selective clearance of glycoforms of a complex glycoprotein pharmaceutical caused by terminal n-acetylglucosamine is similar in humans and cynomolgus monkeys. Glycobiology. 2007;17(5):529–40. doi:10.1093/glycob/cwm017.
  • Deng R, Iyer S, Theil FP, Mortensen DL, Fielder PJ, Prabhu S. Projecting human pharmacokinetics of therapeutic antibodies from nonclinical data: what have we learned? MAbs. 2011;3(1):61–66. doi:10.4161/mabs.3.1.13799.
  • Ling J, Zhou H, Jiao Q, Davis HM. Interspecies scaling of therapeutic monoclonal antibodies: initial look. J Clin Pharmacol. 2009;49(12):1382–402. doi:10.1177/0091270009337134.
  • Oitate M, Masubuchi N, Ito T, Yabe Y, Karibe T, Aoki T, Murayama N, Kurihara A, Okudaira N, Izumi T. Prediction of human pharmacokinetics of therapeutic monoclonal antibodies from simple allometry of monkey data. Drug Metab Pharmacokinet. 2011;26(4):423–30. doi:10.2133/dmpk.DMPK-11-RG-011.
  • Dong JQ, Salinger DH, Endres CJ, Gibbs JP, Hsu CP, Stouch BJ, Hurh E, Gibbs MA. Quantitative prediction of human pharmacokinetics for monoclonal antibodies: retrospective analysis of monkey as a single species for first-in-human prediction. Clin Pharmacokinet. 2011;50(2):131–42. doi:10.2165/11537430-000000000-00000.
  • Kamath AV, Lu D, Gupta P, Jin D, Xiang H, Wong A, Leddy C, Crocker L, Schaefer G, Sliwkowski MX, et al. Preclinical pharmacokinetics of mehd7945a, a novel egfr/her3 dual-action antibody, and prediction of its human pharmacokinetics and efficacious clinical dose. Cancer Chemother Pharmacol. 2012;69(4):1063–69. doi:10.1007/s00280-011-1806-6.
  • Singh AP, Krzyzanski W, Martin SW, Weber G, Betts A, Ahmad A, Abraham A, Zutshi A, Lin J, Singh P. Quantitative prediction of human pharmacokinetics for mabs exhibiting target-mediated disposition. Aaps j. 2015;17(2):389–99. doi:10.1208/s12248-014-9690-8.
  • Figueroa I, Leipold D, Leong S, Zheng B, Triguero-Carrasco M, Fourie-O’Donohue A, Kozak KR, Xu K, Schutten M, Wang H, et al. Prediction of non-linear pharmacokinetics in humans of an antibody-drug conjugate (adc) when evaluation of higher doses in animals is limited by tolerability: case study with an anti-cd33 adc. MAbs. 2018;10(5):738–50. doi:10.1080/19420862.2018.1465160.
  • Crowley AR, Ackerman ME. Mind the gap: how interspecies variability in igg and its receptors may complicate comparisons of human and non-human primate effector function. Front Immunol. 2019;10(697). doi:10.3389/fimmu.2019.00697.
  • Grunst MW, Grandea AG 3rd, Janaka SK, Hammad I, Grimes P, Karl JA, Wiseman R, O’Connor DH, Evans DT. Functional interactions of common allotypes of rhesus macaque fcγr2a and fcγr3a with human and macaque igg subclasses. J Immunol. 2020;205(12):3319–32. doi:10.4049/jimmunol.2000501.
  • Zheng Y, Tesar DB, Benincosa L, Birnböck H, Boswell CA, Bumbaca D, Cowan KJ, Danilenko DM, Daugherty AL, Fielder PJ, et al. Minipig as a potential translatable model for monoclonal antibody pharmacokinetics after intravenous and subcutaneous administration. MAbs. 2012;4(2):243–55. doi:10.4161/mabs.4.2.19387.
  • Richter WF, Grimm HP, Gouy MH, Søgaard S, Kreuzer C, Wessels U, Draganov D, Muenzer C, Hoche T. Subcutaneous site-of-absorption study with the monoclonal antibody tocilizumab in minipigs: administration behind ear translates best to humans. Aaps j. 2020;22(3):63. doi:10.1208/s12248-020-00446-z.
  • Horvath CJ, Milton MN. The tegenero incident and the duff report conclusions: a series of unfortunate events or an avoidable event? Toxicol Pathol. 2009;37(3):372–83. doi:10.1177/0192623309332986.
  • Duff G. 2006. Final report; 2006. Expert scientific group on phase one clinical trials: final report. In Expert Scientific Group on Phase One Clinical Trials. Hoboken NJ, USA; 1–106. https://repository.library.georgetown.edu/handle/10822/969183
  • Suchard SJ, Davis PM, Kansal S, Stetsko DK, Brosius R, Tamura J, Schneeweis L, Bryson J, Salcedo T, Wang H, et al. A monovalent anti-human cd28 domain antibody antagonist: preclinical efficacy and safety. J Immunol. 2013;191(9):4599–610. doi:10.4049/jimmunol.1300470.
  • Yang Z, Wang H, Salcedo TW, Suchard SJ, Xie JH, Schneeweis LA, Fleener CA, Calore JD, Shi R, Zhang SX, et al. Integrated pharmacokinetic/pharmacodynamic analysis for determining the minimal anticipated biological effect level of a novel anti-cd28 receptor antagonist bms-931699. J Pharmacol Exp Ther. 2015;355(3):506–15. doi:10.1124/jpet.115.227249.
  • Shi R, Honczarenko M, Zhang S, Fleener C, Mora J, Lee SK, Wang R, Liu X, Shevell DE, Yang Z, et al. Pharmacokinetic, pharmacodynamic, and safety profile of a novel anti-cd28 domain antibody antagonist in healthy subjects. J Clin Pharmacol. 2017;57(2):161–72. doi:10.1002/jcph.791.
  • Gable KL, Guptill JT. Antagonism of the neonatal fc receptor as an emerging treatment for myasthenia gravis. Front Immunol. 2019:10:3052.
  • Li X, Kimberly RP. Targeting the fc receptor in autoimmune disease. Expert Opin Ther Targets. 2014;18(3):335–50. doi:10.1517/14728222.2014.877891.
  • Smith B, Kiessling A, Lledo-Garcia R, Dixon KL, Christodoulou L, Catley MC, Atherfold P, D’Hooghe LE, Finney H, Greenslade K, et al. Generation and characterization of a high affinity anti-human fcrn antibody, rozanolixizumab, and the effects of different molecular formats on the reduction of plasma igg concentration. MAbs. 2018;10(7):1111–30. doi:10.1080/19420862.2018.1505464.
  • Dall’Acqua WF, Kiener PA, Wu H. Properties of human igg1s engineered for enhanced binding to the neonatal fc receptor (fcrn). J Biol Chem. 2006;281(33):23514–24. doi:10.1074/jbc.M604292200.
  • Neuber T, Frese K, Jaehrling J, Jäger S, Daubert D, Felderer K, Linnemann M, Höhne A, Kaden S, Kölln J, et al. Characterization and screening of igg binding to the neonatal fc receptor. MAbs. 2014;6(4):928–42. doi:10.4161/mabs.28744.
  • Kim J, Hayton WL, Robinson JM, Anderson CL. Kinetics of fcrn-mediated recycling of igg and albumin in human: pathophysiology and therapeutic implications using a simplified mechanism-based model. Clin Immunol. 2007;122(2):146–55. doi:10.1016/j.clim.2006.09.001.
  • Chen Y, Balthasar JP. Evaluation of a catenary pbpk model for predicting the in vivo disposition of mabs engineered for high-affinity binding to fcrn. Aaps j. 2012;14(4):850–59. doi:10.1208/s12248-012-9395-9.
  • Sharma A, Jusko WJ. Characterization of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm. 1996;24(6):611–35. doi:10.1007/BF02353483.
  • Lledo-Garcia R, Dixon K, Shock A, Oliver R. Pharmacokinetic-pharmacodynamic modelling of the anti-fcrn monoclonal antibody rozanolixizumab: translation from preclinical stages to the clinic. CPT Pharmacometrics Syst Pharmacol. 2021;11(1):116–28. doi:10.1002/psp4.12739.
  • Kiessling P, Lledo-Garcia R, Watanabe S, Langdon G, Tran D, Bari M, Christodoulou L, Jones E, Price G, Smith B, et al. The fcrn inhibitor rozanolixizumab reduces human serum igg concentration: a randomized phase 1 study. Sci Transl Med. 2017;9(414). doi:10.1126/scitranslmed.aan1208.
  • Kontermann RE. Strategies to extend plasma half-lives of recombinant antibodies. BioDrugs. 2009;23(2):93–109. doi:10.2165/00063030-200923020-00003.
  • Yeung YA, Leabman MK, Marvin JS, Qiu J, Adams CW, Lien S, Starovasnik MA, Lowman HB. Engineering human igg1 affinity to human neonatal fc receptor: impact of affinity improvement on pharmacokinetics in primates. J Immunol. 2009;182(12):7663–71. doi:10.4049/jimmunol.0804182.
  • Zalevsky J, Chamberlain AK, Horton HM, Karki S, Leung IW, Sproule TJ, Lazar GA, Roopenian DC, Desjarlais JR. Enhanced antibody half-life improves in vivo activity. Nat Biotechnol. 2010;28(2):157–59. doi:10.1038/nbt.1601.
  • Robbie GJ, Criste R, Dall’acqua WF, Jensen K, Patel NK, Losonsky GA, Griffin MP. A novel investigational fc-modified humanized monoclonal antibody, motavizumab-yte, has an extended half-life in healthy adults. Antimicrob Agents Chemother. 2013;57(12):6147–53. doi:10.1128/AAC.01285-13.
  • Valente D, Mauriac C, Schmidt T, Focken I, Beninga J, Mackness B, Qiu H, Vicat P, Kandira A, Radošević K, et al. Pharmacokinetics of novel fc-engineered monoclonal and multispecific antibodies in cynomolgus monkeys and humanized fcrn transgenic mouse models. MAbs. 2020;12(1):1829337. doi:10.1080/19420862.2020.1829337.
  • Dudal S, Subramanian K, Flandre T, Law WS, Lowe PJ, Skerjanec A, Genin JC, Duval M, Piequet A, Cordier A, et al. Integrated pharmacokinetic, pharmacodynamic and immunogenicity profiling of an anti-ccl21 monoclonal antibody in cynomolgus monkeys. MAbs. 2015;7(5):829–37. doi:10.1080/19420862.2015.1060384.
  • Bardroff M, Ewert S, Jaeger U, Jarai G, Carsten C, Kunz S, Wiesehan K. Ccl21 binding molecules. In Ccl21 Binding Molecules. 2010. https://patents.google.com/patent/WO2011080050A3/en
  • Bugelski PJ, Treacy G. Predictive power of preclinical studies in animals for the immunogenicity of recombinant therapeutic proteins in humans. Curr Opin Mol Ther. 2004;6:10–16.
  • van Meer Pj, Kooijman M, van der Laan Jw, Moors EH, Schellekens H. The value of non-human primates in the development of monoclonal antibodies. Nat Biotechnol. 2013;31(10):882–83. doi:10.1038/nbt.2709.
  • Ponce R, Abad L, Amaravadi L, Gelzleichter T, Gore E, Green J, Gupta S, Herzyk D, Hurst C, Ivens IA, et al. Immunogenicity of biologically-derived therapeutics: assessment and interpretation of nonclinical safety studies. Regul Toxicol Pharmacol. 2009;54(2):164–82. doi:10.1016/j.yrtph.2009.03.012.
  • Wierda D, Smith HW, Zwickl CM. Immunogenicity of biopharmaceuticals in laboratory animals. Toxicology. 2001;158(1–2):71–74. doi:10.1016/S0300-483X(00)00410-8.
  • Thway TM, Magana I, Bautista A, Jawa V, Gu W, Ma M. Impact of anti-drug antibodies in preclinical pharmacokinetic assessment. Aaps j. 2013;15(3):856–63. doi:10.1208/s12248-013-9484-4.
  • USFDA. 2013. Albiglutide #125431. Center for Drug Evaluation and Research (CDER). https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/125431Orig1s000PharmR.pdf.
  • Rehlaender BN, Cho MJ. Antibodies as carrier proteins. Pharm Res. 1998;15(11):1652–56. doi:10.1023/A:1011936007457.
  • Gunn H. Immunogenicity of recombinant human interleukin-3. Clin Immunol Immunopathol. 1997;83(1):5–7. doi:10.1006/clin.1996.4302.
  • Koren E, Zuckerman LA, Mire-Sluis AR. Immune responses to therapeutic proteins in humans–clinical significance, assessment and prediction. Curr Pharm Biotechnol. 2002;3(4):349–60. doi:10.2174/1389201023378175.
  • Aston R, Cowden WB, Ada GL. Antibody-mediated enhancement of hormone activity. Mol Immunol. 1989;26(5):435–46. doi:10.1016/0161-5890(89)90103-X.
  • Sailstad JM, Amaravadi L, Clements-Egan A, Gorovits B, Myler HA, Pillutla RC, Pursuhothama S, Putman M, Rose MK, Sonehara K, et al. A white paper–consensus and recommendations of a global harmonization team on assessing the impact of immunogenicity on pharmacokinetic measurements. Aaps j. 2014;16(3):488–98. doi:10.1208/s12248-014-9582-y.
  • Herzyk D. Anti-drug antibody testing in toxicity studies. In: NIoHS J, editor. Anti-drug antibody testing in toxicity studies; 2010. https://www.nihs.go.jp/dec/rs/hyouka/2010/PM6_Immunogenicity_Scientific.pdf
  • Brock WJ, Mounho B, Fu L. 2014. The role of the study director in nonclinical studies: pharmaceuticals, chemicals, medical devices, and pesticides. Hoboken NJ, USA: John Wiley & Sons.
  • Richter WF, Gallati H, Schiller CD. Animal pharmacokinetics of the tumor necrosis factor receptor-immunoglobulin fusion protein lenercept and their extrapolation to humans. Drug Metab Dispos. 1999;27:21–25.
  • Rau R, Sander O, van Riel P, van de Putte L, Hasler F, Zaug M, Kneer J, van der Auwera P, Stevens RM. Intravenous human recombinant tumor necrosis factor receptor p55-fc igg1 fusion protein ro 45-2081 (lenercept): a double blind, placebo controlled dose-finding study in rheumatoid arthritis. J Rheumatol. 2003;30:680–90.
  • Grimm HP, Schick E, Hainzl D, Justies N, Yu L, Klein C, Husar E, Richter WF. Pkpd assessment of the anti-cd20 antibody obinutuzumab in cynomolgus monkey is feasible despite marked anti-drug antibody response in this species. J Pharm Sci. 2019;108(11):3729–36. doi:10.1016/j.xphs.2019.07.013.
  • Han C, Gunn GR, Marini JC, Shankar G, Han Hsu H, Davis HM. Pharmacokinetics and immunogenicity investigation of a human anti-interleukin-17 monoclonal antibody in non-naïve cynomolgus monkeys. Drug Metab Dispos. 2015;43(5):762–70. doi:10.1124/dmd.114.062679.
  • Xin Y, Bai S, Damico-Beyer LA, Jin D, Liang WC, Wu Y, Theil FP, Joshi A, Lu Y, Lowe J, et al. Anti-neuropilin-1 (mnrp1685a): unexpected pharmacokinetic differences across species, from preclinical models to humans. Pharm Res. 2012;29(9):2512–21. doi:10.1007/s11095-012-0781-x.
  • Bumbaca D, Wong A, Drake E, Reyes AE 2nd, Lin BC, Stephan JP, Desnoyers L, Shen BQ, Dennis MS. Highly specific off-target binding identified and eliminated during the humanization of an antibody against fgf receptor 4. MAbs. 2011;3(4):376–86. doi:10.4161/mabs.3.4.15786.
  • Vugmeyster Y, Szklut P, Wensel D, Ross J, Xu X, Awwad M, Gill D, Tchistiakov L, Warner G. Complex pharmacokinetics of a humanized antibody against human amyloid beta peptide, anti-abeta ab2, in nonclinical species. Pharm Res. 2011;28(7):1696–706. doi:10.1007/s11095-011-0405-x.
  • Waldmann TA, Terry WD. Familial hypercatabolic hypoproteinemia. A disorder of endogenous catabolism of albumin and immunoglobulin. J Clin Invest. 1990;86(6):2093–98. doi:10.1172/JCI114947.
  • Junghans RP, Anderson CL. The protection receptor for igg catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci U S A. 1996;93(11):5512–16. doi:10.1073/pnas.93.11.5512.
  • Tiwari A, Kasaian M, Heatherington AC, Jones HM, Hua F. A mechanistic pk/pd model for two anti-il13 antibodies explains the difference in total il-13 accumulation observed in clinical studies. MAbs. 2016;8(5):983–90. doi:10.1080/19420862.2016.1172151.
  • Meno-Tetang GM, Lowe PJ. On the prediction of the human response: a recycled mechanistic pharmacokinetic/pharmacodynamic approach. Basic Clin Pharmacol Toxicol. 2005;96(3):182–92. doi:10.1111/j.1742-7843.2005.pto960307.x.
  • Vugmeyster Y, Tian X, Szklut P, Kasaian M, Xu X. Pharmacokinetic and pharmacodynamic modeling of a humanized anti-il-13 antibody in naive and ascaris-challenged cynomolgus monkeys. Pharm Res. 2009;26(2):306–15. doi:10.1007/s11095-008-9739-4.
  • Leach MW, Rottman JB, Hock MB, Finco D, Rojko JL, Beyer JC. Immunogenicity/hypersensitivity of biologics. Toxicol Pathol. 2014;42(1):293–300. doi:10.1177/0192623313510987.
  • Hey A, Baumann A, Kronenberg S, Blaich G, Mohl S, Fagg R, Ulrich P, Rattel B, Richter WF, Kiessling A, et al. Nonclinical development of biologics: integrating safety, pharmacokinetics, and pharmacodynamics to create smarter and more flexible nonclinical safety programs optimizing animal use. Int J Toxicol. 2021;40(3):270–84. doi:10.1177/1091581821994288.
  • Nagayasu M, Ozeki K. Combination of cassette-dosing and microsampling for reduced animal usage for antibody pharmacokinetics in cynomolgus monkeys, wild-type mice, and human fcrn transgenic mice. Pharm Res. 2021;38(4):583–92. doi:10.1007/s11095-021-03028-6.
  • Ker T, Blaich G, Baumann A, Kronenberg S, Hey A, Kiessling A, Schmitt PM, Driessen W, Carrez C, Kramer D, et al. Challenges of non-clinical safety testing for biologics: a report of the 9th biosafe european annual general membership meeting. MAbs. 2021;13(1):1938796. doi:10.1080/19420862.2021.1938796.
  • Dostalek M, Prueksaritanont T, Kelley RF. Pharmacokinetic de-risking tools for selection of monoclonal antibody lead candidates. MAbs. 2017;9(5):756–66. doi:10.1080/19420862.2017.1323160.
  • Hötzel I, Theil FP, Bernstein LJ, Prabhu S, Deng R, Quintana L, Lutman J, Sibia R, Chan P, Bumbaca D, et al. A strategy for risk mitigation of antibodies with fast clearance. MAbs. 2012;4(6):753–60.
  • Chung S, Nguyen V, Lin YL, Lafrance-Vanasse J, Scales SJ, Lin K, Deng R, Williams K, Sperinde G, Li JJ, et al. An in vitro fcrn- dependent transcytosis assay as a screening tool for predictive assessment of nonspecific clearance of antibody therapeutics in humans. MAbs. 2019;11(5):942–55. doi:10.1080/19420862.2019.1605270.
  • Kraft TE, Richter WF, Emrich T, Knaupp A, Schuster M, Wolfert A, Kettenberger H. Heparin chromatography as an in vitro predictor for antibody clearance rate through pinocytosis. mAbs. 2020;12(1):1683432. doi:10.1080/19420862.2019.1683432.
  • Rostami-Hodjegan A, Tamai I, Pang KS. Physiologically based pharmacokinetic (pbpk) modeling: it is here to stay! Biopharm Drug Dispos. 2012;33(2):47–50. doi:10.1002/bdd.1776.
  • Covell DG, Barbet J, Holton OD, Black CD, Parker RJ, Weinstein JN. Pharmacokinetics of monoclonal immunoglobulin g1, f(ab’)2, and fab’ in mice. Cancer Res. 1986;46:3969–78.
  • Glassman PM, Balthasar JP. Physiologically-based modeling of monoclonal antibody pharmacokinetics in drug discovery and development. Drug Metab Pharmacokinet. 2019;34(1):3–13. doi:10.1016/j.dmpk.2018.11.002.
  • Hu L, Hansen RJ. Issues, challenges, and opportunities in model-based drug development for monoclonal antibodies. J Pharm Sci. 2013;102(9):2898–908. doi:10.1002/jps.23504.
  • Wang J, Iyer S, Fielder PJ, Davis JD, Deng R. Projecting human pharmacokinetics of monoclonal antibodies from nonclinical data: comparative evaluation of prediction approaches in early drug development. Biopharm Drug Dispos. 2016;37(2):51–65. doi:10.1002/bdd.1952.
  • Glassman PM, Balthasar JP. Physiologically-based pharmacokinetic modeling to predict the clinical pharmacokinetics of monoclonal antibodies. J Pharmacokinet Pharmacodyn. 2016;43(4):427–46. doi:10.1007/s10928-016-9482-0.
  • Hu S, D’Argenio DZ. Predicting monoclonal antibody pharmacokinetics following subcutaneous administration via whole-body physiologically-based modeling. J Pharmacokinet Pharmacodyn. 2020;47(5):385–409. doi:10.1007/s10928-020-09691-3.
  • Jones HM, Zhang Z, Jasper P, Luo H, Avery LB, King LE, Neubert H, Barton HA, Betts AM, Webster R. A physiologically-based pharmacokinetic model for the prediction of monoclonal antibody pharmacokinetics from in vitro data. CPT Pharmacometrics Syst Pharmacol. 2019;8(10):738–47. doi:10.1002/psp4.12461.
  • Bae DJ, Kim SY, Bae SM, Hwang AK, Pak KC, Yoon S, Lim HS. Whole-body physiologically based pharmacokinetic modeling of trastuzumab and prediction of human pharmacokinetics. J Pharm Sci. 2019;108(6):2180–90. doi:10.1016/j.xphs.2019.01.024.
  • Glassman PM, Chen Y, Balthasar JP. Scale-up of a physiologically-based pharmacokinetic model to predict the disposition of monoclonal antibodies in monkeys. J Pharmacokinet Pharmacodyn. 2015;42(5):527–40. doi:10.1007/s10928-015-9444-y.
  • Shah DK, Betts AM. Antibody biodistribution coefficients: inferring tissue concentrations of monoclonal antibodies based on the plasma concentrations in several preclinical species and human. mAbs. MAbs 2013;5(2):297–305. doi:10.4161/mabs.23684.
  • Niederalt C, Kuepfer L, Solodenko J, Eissing T, Siegmund HU, Block M, Willmann S, Lippert J. A generic whole body physiologically based pharmacokinetic model for therapeutic proteins in pk-sim. J Pharmacokinet Pharmacodyn. 2018;45(2):235–57. doi:10.1007/s10928-017-9559-4.
  • Sager JE, Yu J, Ragueneau-Majlessi I, Isoherranen N. Physiologically based pharmacokinetic (pbpk) modeling and simulation approaches: a systematic review of published models, applications, and model verification. Drug Metab Dispos. 2015;43(11):1823–37. doi:10.1124/dmd.115.065920.
  • Varkhede N, Forrest ML. Understanding the monoclonal antibody disposition after subcutaneous administration using a minimal physiologically based pharmacokinetic model. J Pharm Pharm Sci. 2018;21(1s):130s–148s. doi:10.18433/jpps30028.
  • Zhao J, Cao Y, Jusko WJ. Across-species scaling of monoclonal antibody pharmacokinetics using a minimal pbpk model. Pharm Res. 2015;32(10):3269–81. doi:10.1007/s11095-015-1703-5.
  • Cao Y, Balthasar JP, Jusko WJ. Second-generation minimal physiologically-based pharmacokinetic model for monoclonal antibodies. J Pharmacokinet Pharmacodyn. 2013;40(5):597–607. doi:10.1007/s10928-013-9332-2.
  • Li L, Gardner I, Dostalek M, Jamei M. Simulation of monoclonal antibody pharmacokinetics in humans using a minimal physiologically based model. Aaps j. 2014;16(5):1097–109. doi:10.1208/s12248-014-9640-5.
  • Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, Das A, Jonas JB, Keeffe J, Kempen JH, et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;5(12):e1221–e1234. doi:10.1016/S2214-109X(17)30393-5.
  • Stewart MW. Pharmacokinetics, pharmacodynamics and pre-clinical characteristics of ophthalmic drugs that bind vegf. Expert Rev Clin Pharmacol. 2014;7(2):167–80. doi:10.1586/17512433.2014.884458.
  • Peyman GA, Lad EM, Moshfeghi DM. Intravitreal injection of therapeutic agents. Retina. 2009;29(7):875–912. doi:10.1097/IAE.0b013e3181a94f01.
  • Krohne TU, Eter N, Holz FG, Meyer CH. Intraocular pharmacokinetics of bevacizumab after a single intravitreal injection in humans. Am J Ophthalmol. 2008;146(4):508–12. doi:10.1016/j.ajo.2008.05.036.
  • Moisseiev E, Waisbourd M, Ben-Artsi E, Levinger E, Barak A, Daniels T, Csaky K, Loewenstein A, Barequet IS. Pharmacokinetics of bevacizumab after topical and intravitreal administration in human eyes. Graefes Arch Clin Exp Ophthalmol. 2014;252(2):331–37. doi:10.1007/s00417-013-2495-0.
  • Caruso A, Füth M, Alvarez-Sánchez R, Belli S, Diack C, Maass KF, Schwab D, Kettenberger H, Mazer. Ocular half-life of intravitreal biologics in humans and other species: meta-analysis and model-based prediction. Mol Pharm. NA;17:695–709.
  • Agrahari V, Mandal A, Agrahari V, Trinh HM, Joseph M, Ray A, Hadji H, Mitra R, Pal D, Mitra AK. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6(6):735–54. doi:10.1007/s13346-016-0339-2.
  • Del Amo EM, Urtti A. Rabbit as an animal model for intravitreal pharmacokinetics: clinical predictability and quality of the published data. Exp Eye Res. 2015;137:111–124.
  • Gadkar K, Pastuskovas CV, Le Couter JE, Elliott JM, Zhang J, Lee CV, Sanowar S, Fuh G, Kim HS, Lombana TN, et al. Design and pharmacokinetic characterization of novel antibody formats for ocular therapeutics. Invest Ophthalmol Vis Sci. 2015;56(9):5390–400. doi:10.1167/iovs.15-17108.
  • Fuchs H, Igney F. Binding to ocular albumin as a half-life extension principle for intravitreally injected drugs: evidence from mechanistic rat and rabbit studies. J Ocul Pharmacol Ther. 2017;33(2):115–22. doi:10.1089/jop.2016.0083.
  • van Meer Pj, Ebbers HC, Kooijman M, Wied Gispen-de CC, Silva-Lima B, Moors EH, Schellekens H. Contribution of animal studies to evaluate the similarity of biosimilars to reference products. Drug Discov Today. 2015;20(4):483–90. doi:10.1016/j.drudis.2014.11.009.
  • van Meer Pj, Graham ML, Schuurman HJ. The safety, efficacy and regulatory triangle in drug development: impact for animal models and the use of animals. Eur J Pharmacol. 2015;759:3–13.
  • Epstein MM, Vermeire T. An opinion on non-human primates testing in Europe. Drug Discov Today Dis Models. 2017;23:5–9.
  • Houston JB. Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem Pharmacol. 1994;47(9):1469–79. doi:10.1016/0006-2952(94)90520-7.
  • Kanebratt KP, Janefeldt A, Vilén L, Vildhede A, Samuelsson K, Milton L, Björkbom A, Persson M, Leandersson C, Andersson TB, et al. Primary human hepatocyte spheroid model as a 3d in vitro platform for metabolism studies. J Pharm Sci. 2021;110(1):422–31. doi:10.1016/j.xphs.2020.10.043.
  • Foster AJ, Chouhan B, Regan SL, Rollison H, Amberntsson S, Andersson LC, Srivastava A, Darnell M, Cairns J, Lazic SE, et al. Integrated in vitro models for hepatic safety and metabolism: evaluation of a human liver-chip and liver spheroid. Arch Toxicol. 2019;93(4):1021–37. doi:10.1007/s00204-019-02427-4.
  • Riede J, Wollmann BM, Molden E, Ingelman-Sundberg M. Primary human hepatocyte spheroids as an in vitro tool for investigating drug compounds with low clearance. Drug Metab Dispos. 2021;49(7):501–08. doi:10.1124/dmd.120.000340.
  • Ahn SI, Sei YJ, Park HJ, Kim J, Ryu Y, Choi JJ, Sung HJ, MacDonald TJ, Levey AI, Kim Y. Microengineered human blood-brain barrier platform for understanding nanoparticle transport mechanisms. Nat Commun. 2020;11(1):175. doi:10.1038/s41467-019-13896-7.
  • Jaramillo CAC, Belli S, Cascais AC, Dudal S, Edelmann MR, Haak M, Brun ME, Otteneder MB, Ullah M, Funk C, et al. Toward in vitro-to-in vivo translation of monoclonal antibody pharmacokinetics: application of a neonatal fc receptor-mediated transcytosis assay to understand the interplaying clearance mechanisms. MAbs. 2017;9(5):781–91. doi:10.1080/19420862.2017.1320008.
  • Khailaie S, Rowshanravan B, Robert PA, Waters E, Halliday N, Badillo Herrera JD, Walker LSK, Sansom DM, Meyer-Hermann M. Characterization of ctla4 trafficking and implications for its function. Biophys J. 2018;115(7):1330–43. doi:10.1016/j.bpj.2018.08.020.
  • Krippendorff BF, Kuester K, Kloft C, Huisinga W. Nonlinear pharmacokinetics of therapeutic proteins resulting from receptor mediated endocytosis. J Pharmacokinet Pharmacodyn. 2009;36(3):239–60. doi:10.1007/s10928-009-9120-1.
  • Jiang X, Chen X, Carpenter TJ, Wang J, Zhou R, Davis HM, Heald DL, Wang W. Development of a target cell-biologics-effector cell (tbe) complex-based cell killing model to characterize target cell depletion by t cell redirecting bispecific agents. MAbs. 2018;10(6):876–89. doi:10.1080/19420862.2018.1480299.
  • Karolak A, Markov DA, McCawley LJ, Rejniak KA. Towards personalized computational oncology: from spatial models of tumour spheroids, to organoids, to tissues. J R Soc Interface. 2018;15(138):20170703. doi:10.1098/rsif.2017.0703.