2,773
Views
3
CrossRef citations to date
0
Altmetric
Report

eIg-based bispecific T-cell engagers targeting EGFR: Format matters

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2183540 | Received 19 Oct 2022, Accepted 17 Feb 2023, Published online: 02 Mar 2023

References

  • Hosseini SS, Khalili S, Baradaran B, Bidar N, Shahbazi MA, Mosafer J, Hashemzaei M, Mokhtarzadeh A, Hamblin MR. Bispecific monoclonal antibodies for targeted immunotherapy of solid tumors: recent advances and clinical trials. Int J Biol Macromol. 2021;167:1030–16. doi:10.1016/j.ijbiomac.2020.11.058. PMID: 33197478.
  • Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs. 2017 PMID: 28071970;9(2):182–212. doi:10.1080/19420862.2016.1268307.
  • Brinkmann U, Kontermann RE. Bispecific antibodies. Science. 2021 PMID: 34045345;372(6545):916–17. doi:10.1126/science.abg1209.
  • Voynov V, Adam PJ, Nixon AE, Scheer JM. Discovery strategies to maximize the clinical potential of t-cell engaging antibodies for the treatment of solid tumors. Antibodies. 2020 PMID: 33217946;9(4):65. doi:10.3390/antib9040065.
  • Antonarelli G, Giugliano F, Corti C, Repetto M, Tarantino P, Curigliano G. Research and clinical landscape of bispecific antibodies for the treatment of solid malignancies. Pharmaceuticals. 2021 PMID: 34577584;14(9):884. doi:10.3390/ph14090884.
  • Wang S, Chen K, Lei Q, Ma P, Yuan AQ, Zhao Y, Jiang Y, Fang H, Xing S, Fang Y, et al. The state of the art of bispecific antibodies for treating human malignancies. EMBO Mol Med. 2021;13(9):1–13. PMID: 34431224. doi:10.15252/emmm.202114291.
  • Frampton JE. Catumaxomab: in malignant ascites. Drugs. 2012 PMID: 22676343;72(10):1399–410. doi:10.2165/11209040-000000000-00000.
  • Burt R, Warcel D, Fielding AK. Blinatumomab, a bispecific B-cell and T-cell engaging antibody, in the treatment of B-cell malignancies. Hum Vaccines Immunother. 2019;15(3):594–602. doi:10.1080/21645515.2018.1540828. PMID: 30380973.
  • Kaplon H, Crescioli S, Chenoweth A, Visweswaraiah J, Reichert JM, Crescioli S, Chenoweth A. Antibodies to watch in 2023. MAbs. 2023;15(1). PMID: 35030985. doi:10.1080/19420862.2022.2153410.
  • Dhillon S. Tebentafusp: first approval. Drugs. 2022 PMID: 35364798;82(6):703–10. doi:10.1007/s40265-022-01704-4.
  • Middelburg J, Kemper K, Engelberts P, Labrijn AF, Schuurman J, Van Hall T. Overcoming challenges for CD3-bispecific antibody therapy in solid tumors. Cancers (Basel). 2021 PMID: 33466732;13(2):1–25. doi:10.3390/cancers13020287.
  • Yamaoka T, Ohba M, Ohmori T. Molecular-targeted therapies for epidermal growth factor receptor and its resistance mechanisms. Int J Mol Sci. 2017 PMID: 29140271;18(11):2420. doi:10.3390/ijms18112420.
  • Cai WQ, Zeng LS, Wang LF, Wang YY, Cheng JT, Zhang Y, Han ZW, Zhou Y, Huang SL, Wang XW, et al. The latest battles between EGFR monoclonal antibodies and resistant tumor cells. Front Oncol. 2020;10:1249. doi:10.3389/fonc.2020.01249. PMID: 32793499.
  • Roskoski R. Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. Pharmacol Res. 2019;139:395–411. doi:10.1016/j.phrs.2018.11.014. PMID: 30500458.
  • De Roock W, Claes B, Bernasconi D, De Schutter J, Biesmans B, Fountzilas G, Kalogeras KT, Kotoula V, Papamichael D, Laurent-Puig P, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol. 2010;11(8):753–62. PMID: 20619739. doi:10.1016/S1470-2045(10)70130-3.
  • Zhou J, Ji Q, Li Q. Resistance to anti-EGFR therapies in metastatic colorectal cancer: underlying mechanisms and reversal strategies. J Exp Clin Cancer Res. 2021;40(1):1–17. doi:10.1186/s13046-021-02130-2. PMID: 34663410.
  • Dickopf S, Georges GJ, Brinkmann U. Format and geometries matter: structure-based design defines the functionality of bispecific antibodies. Comput Struct Biotechnol J. 2020;18:1221–27. doi:10.1016/j.csbj.2020.05.006. PMID: 32542108.
  • Chen W, Yang F, Wang C, Narula J, Pascua E, Ni I, Ding S, Deng X, Chu MLH, Pham A, et al. One size does not fit all: navigating the multi-dimensional space to optimize T-cell engaging protein therapeutics. MAbs. 2021;13(1):1–18. PMID: 33557687. doi:10.1080/19420862.2020.1871171.
  • Aschmoneit N, Steinlein S, Kühl L, Seifert O, Kontermann RE. A scDb-based trivalent bispecific antibody for T-cell-mediated killing of HER3-expressing cancer cells. Sci Rep. 2021;11(1):13880. doi:10.1038/s41598-021-93351-0. PMID: 34230555.
  • Aschmoneit N, Kühl L, Seifert O, Kontermann RE. Fc-comprising scDb-based trivalent, bispecific T-cell engagers for selective killing of HER3-expressing cancer cells independent of cytokine release. J ImmunoTher Cancer. 2021;9(11):1–12. doi:10.1136/jitc-2021-003616. PMID: 34782429.
  • Segal DM, Weiner GJ, Weiner LM. Bispecific antibodies in cancer therapy. Curr Opin Immunol. 1999;11(5):558–62. doi:10.1016/S0952-7915(99)00015-1. PMID: 10508714.
  • Husain B, Ellerman D. Expanding the boundaries of biotherapeutics with bispecific antibodies. BioDrugs. 2018 PMID: 30132211;32(5):441–64. doi:10.1007/s40259-018-0299-9.
  • Harwood SL, Alvarez-Cienfuegos A, Nuñez-Prado N, Compte M, Hernández-Pérez S, Merino N, Bonet J, Navarro R, Van Bergen En Henegouwen PMP, Lykkemark S, et al. ATTACK, a novel bispecific T cell-recruiting antibody with trivalent EGFR binding and monovalent CD3 binding for cancer immunotherapy. Oncoimmunology. 2018;7(1):e1377874. PMID: 29296540. doi:10.1080/2162402X.2017.1377874.
  • Dickopf S, Lauer ME, Ringler P, Spick C, Kern P, Brinkmann U. Highly flexible, IgG-shaped, trivalent antibodies effectively target tumor cells and induce T cell-mediated killing. Biol Chem. 2018;400(3):343–50. doi:10.1515/hsz-2018-0338. PMID: 30763031.
  • Bacac M, Fauti T, Sam J, Colombetti S, Weinzierl T, Ouaret D, Bodmer W, Lehmann S, Hofer T, Hosse RJ, et al. A novel carcinoembryonic antigen T-cell bispecific antibody (CEA TCB) for the treatment of solid tumors. Clin Cancer Res. 2016;22(13):3286–97. PMID: 26861458. doi:10.1158/1078-0432.CCR-15-1696.
  • Kühl L, Aschmoneit N, Kontermann RE, Seifert O. The eIg technology to generate Ig-like bispecific antibodies. MAbs. 2022;14(1). PMID: 35427197. doi:10.1080/19420862.2022.2063043.
  • Siegemund M, Pollak N, Seifert O, Wahl K, Hanak K, Vogel A, Nussler AK, Göttsch D, Münkel S, Bantel H, et al. Superior antitumoral activity of dimerized targeted single-chain TRAIL fusion proteins under retention of tumor selectivity. Cell Death Dis. 2012;3(4): PMID: 22495350 e295–e295 doi: 10.1038/cddis.2012.29.
  • Armour KL, Clark MR, Hadley AG, Williamson LM. Recombinant human IgG molecules lacking Fcgamma receptor I binding and monocyte triggering activities. Eur J Immunol. 1999;29(8):2613–24. doi:10.1002/(SICI)1521-4141(199908)29:08<2613:AID-IMMU2613>3.0.CO;2-J. PMID: 10458776.
  • Merchant AM, Zhu Z, Yuan JQ, Goddard A, Adams CW, Presta LG, Carter P. An efficient route to human bispecific IgG. Nat Biotechnol. 1998;16(7):677–81. doi:10.1038/nbt0798-677. PMID: 9661204.
  • Jiang W, Kahn SM, Guillem JG, Lu SH, Weinstein IB. Rapid detection of ras oncogenes in human tumors: applications to colon, esophageal, and gastric cancer. Oncogene. 1989;4(7):923–28. PMID: 2666911.
  • Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006 PMID: 16377102;366(1):2–16. doi:10.1016/j.gene.2005.10.018.
  • Bianco R, Gelardi T, Damiano V, Ciardiello F, Tortora G. Rational bases for the development of EGFR inhibitors for cancer treatment. Int J Biochem Cell Biol. 2007;39(7–8):1416–31. doi:10.1016/j.biocel.2007.05.008. PMID: 17596994.
  • Slaga D, Ellerman D, Lombana TN, Vij R, Li J, Hristopoulos M, Clark R, Johnston J, Shelton A, Mai E, et al. Avidity-based binding to HER2 results in selective killing of HER2-overexpressing cells by anti-HER2/CD3. Sci Transl Med. 2018;10(463):1–12. PMID: 30333240. doi:10.1126/scitranslmed.aat5775.
  • Ellerman D. Bispecific T-cell engagers: towards understanding variables influencing the in vitro potency and tumor selectivity and their modulation to enhance their efficacy and safety. Methods. 2019;154:102–17. PMID: 30395966. doi:10.1016/j.ymeth.2018.10.026.
  • Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH, Diaz LA. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol. 2019;16(6):361–75. doi:10.1038/s41575-019-0126-x. PMID: 30886395.
  • Wuellner U, Klupsch K, Buller F, Attinger-Toller I, Santimari R, Zbinden I, Henne P, Grabulovski D, Bertschinger J, Brack S. Bispecific CD3/HER2 targeting FynomAb induces redirected t cell-mediated cytolysis with high potency and enhanced tumor selectivity. Antibodies. 2015;4(4):426–40. doi:10.3390/antib4040426.
  • Santich BH, Park JA, Tran H, Guo HF, Huse M, V CN. Interdomain spacing and spatial configuration drive the potency of IgG-[L]-scFv T cell bispecific antibodies. Sci Transl Med. 2020;12(534):1–11. doi:10.1126/scitranslmed.aax1315. PMID: 32161106.
  • Wu X, Sereno AJ, Huang F, Lewis SM, Lieu RL, Weldon C, Torres C, Fine C, Batt MA, Fitchett JR, et al. Fab-based bispecific antibody formats with robust biophysical properties and biological activity. MAbs. 2015;7(3):470–82. PMID: 25774965. doi:10.1080/19420862.2015.1022694.
  • Cosenza M, Sacchi S, Pozzi S. Cytokine release syndrome associated with T-cell-based therapies for hematological malignancies: pathophysiology, clinical presentation, and treatment. Int J Mol Sci. 2021 PMID: 34299273;22(14):7652. doi:10.3390/ijms22147652.
  • Morris EC, Neelapu SS, Giavridis T, Sadelain M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol. 2022;22(2):85–96. doi:10.1038/s41577-021-00547-6. PMID: 34002066.
  • Liu R, Oldham RJ, Teal E, Beers SA, Cragg MS. Fc-engineering for modulated effector functions — improving antibodies for cancer treatment. Antibodies. 2020 PMID: 33212886;9(4):64. doi:10.3390/antib9040064.
  • Richter F, Liebig T, Guenzi E, Herrmann A, Scheurich P, Pfizenmaier K, Kontermann RE, Zissel G. Antagonistic TNF receptor one-specific antibody (ATROSAB): receptor binding and in vitro bioactivity. PLoS One. 2013 PMID: 23977237;8(8):e72156. doi:10.1371/journal.pone.0072156.
  • Faroudi M, Utzny C, Salio M, Cerundolo V, Guiraud M, Müller S, Valitutti S. Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: manifestation of a dual activation threshold. Proc Natl Acad Sci U S A. 2003 PMID: 14610278;100(24):14145–50. doi:10.1073/pnas.2334336100.
  • Wiedemann A, Depoil D, Faroudi M, Valitutti S. Cytotoxic T lymphocytes kill multiple targets simultaneously via spatiotemporal uncoupling of lytic and stimulatory synapses. Proc Natl Acad Sci U S A. 2006;103(29):10985–90. doi:10.1073/pnas.0600651103. PMID: 16832064.
  • Li J, Piskol R, Ybarra R, Chen YJJ, Li J, Slaga D, Hristopoulos M, Clark R, Modrusan Z, Totpal K, et al. CD3 bispecific antibody–induced cytokine release is dispensable for cytotoxic T cell activity. Sci Transl Med. 2019;11(508):1–13. PMID: 31484792. doi:10.1126/scitranslmed.aax8861.
  • Dang K, Castello G, Clarke SC, Li Y, Balasubramani A, Boudreau A, Davison L, Harris KE, Pham D, Sankaran P, et al. Attenuating CD3 affinity in a PSMAxCD3 bispecific antibody enables killing of prostate tumor cells with reduced cytokine release. J ImmunoTher Cancer. 2021;9(6):1–14. PMID: 34088740. doi:10.1136/jitc-2021-002488.
  • Mandikian D, Takahashi N, Lo AA, Li J, Eastham-Anderson J, Slaga D, Ho J, Hristopoulos M, Clark R, Totpal K, et al. Relative target affinities of T-cell–dependent bispecific antibodies determine biodistribution in a solid tumor mouse model. Mol Cancer Ther. 2018;17(4):776–85. PMID: 29339550. doi:10.1158/1535-7163.MCT-17-0657.
  • Staflin K, Zuch de Zafra CL, Schutt LK, Clark V, Zhong F, Hristopoulos M, Clark R, Li J, Mathieu M, Chen X, et al. Target arm affinities determine preclinical efficacy and safety of anti-HER2/CD3 bispecific antibody. JCI Insight. 2020;5(7): PMID: 32271166 doi: 10.1172/JCI.INSIGHT.133757.
  • Purbhoo MA, Irvine DJ, Huppa JB, Davis MM. T cell killing does not require the formation of a stable mature immunological synapse. Nat Immunol. 2004;5(5):524–30. doi:10.1038/ni1058. PMID: 15048111.
  • Root AR, Cao W, Li B, LaPan P, Meade C, Sanford J, Jin M, O’sullivan C, Cummins E, Lambert M, et al. Development of PF-06671008, a highly potent anti-P-cadherin/anti-CD3 bispecific DART molecule with extended half-life for the treatment of cancer. Antibodies. 2016;5(1):6. PMID: 31557987. doi:10.3390/antib5010006.
  • Bluemel C, Hausmann S, Fluhr P, Sriskandarajah M, Stallcup WB, Baeuerle PA, Kufer P. Epitope distance to the target cell membrane and antigen size determine the potency of T cell-mediated lysis by BiTE antibodies specific for a large melanoma surface antigen. Cancer Immunol Immunother. 2010;59(8):1197–209. doi:10.1007/s00262-010-0844-y. PMID: 20309546.
  • Li J, Stagg NJ, Johnston J, Harris MJ, Menzies SA, DiCara D, Clark V, Hristopoulos M, Cook R, Slaga D, et al. Membrane-proximal epitope facilitates efficient t cell synapse formation by anti-fcrh5/cd3 and is a requirement for myeloma cell killing. Cancer Cell. 2017;31(3):383–95. PMID: 28262555. doi:10.1016/j.ccell.2017.02.001.
  • Qi J, Li X, Peng H, Cook EM, Dadashian EL, Wiestner A, Park HJ, Rader C. Potent and selective antitumor activity of a T cell-engaging bispecific antibody targeting a membrane-proximal epitope of ROR1. Proc Natl Acad Sci U S A. 2018;115(24):E5467–76. doi:10.1073/pnas.1719905115. PMID: 29844189.