1,916
Views
3
CrossRef citations to date
0
Altmetric
Report

Improved pharmacokinetics of HIV-neutralizing VRC01-class antibodies achieved by reduction of net positive charge on variable domain

, , , , , , , , , , , , , , , , , & ORCID Icon show all
Article: 2223350 | Received 16 Dec 2022, Accepted 06 Jun 2023, Published online: 21 Jun 2023

References

  • Lu RM Hwang YC Liu IJ Lee CC Tsai HZ Li HJ Wu HC. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27:1. doi:10.1186/s12929-019-0592-z.
  • Chames P Van Regenmortel M Weiss E Baty D. Therapeutic antibodies: successes limitations and hopes for the future. Br J Pharmacol. 2009;157(2):220–15. doi:10.1111/j.1476-5381.2009.00190.x.
  • Gruell H Klein F. Antibody-mediated prevention and treatment of HIV-1 infection. Retrovirology. 2018;15:73. doi:10.1186/s12977-018-0455-9.
  • Julg B Barouch DH. Neutralizing antibodies for HIV-1 prevention. Curr Opin HIV AIDS. 2019;14(4):318–24. doi:10.1097/COH.0000000000000556.
  • Corey L Gilbert PB Juraska M Montefiori DC Morris L Karuna ST Edupuganti S Mgodi NM deCamp AC Rudnicki E et al. Two Randomized Trials of Neutralizing Antibodies to Prevent HIV-1 Acquisition. N Engl J Med. 2021;384(11):1003–14. doi:10.1056/NEJMoa2031738.
  • Zalevsky J Chamberlain AK Horton HM Karki S Leung IW Sproule TJ Lazar GA Roopenian DC Desjarlais JR. Enhanced antibody half-life improves in vivo activity. Nat Biotechnol. 2010;28:157–59. doi:10.1038/nbt.1601.
  • Dall’acqua WF Kiener PA Wu H. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem. 2006;281(33):23514–24. doi:10.1074/jbc.M604292200.
  • Lee CH Kang TH Godon O Watanabe M Delidakis G Gillis CM Sterlin D Hardy D Cogne M Macdonald LE et al. An engineered human Fc domain that behaves like a Ph-toggle switch for ultra-long circulation persistence. Nat Commun. 2019;10(1): ARTN 5031. doi: 10.1038/s41467-019-13108-2.
  • Grevys A Bern M Foss S Bratlie DB Moen A Gunnarsen KS Aase A Michaelsen TE Sandlie I Andersen JT. Fc Engineering of Human IgG1 for Altered Binding to the Neonatal Fc Receptor Affects Fc Effector Functions. J Immunol. 2015;194(11):5497–508. doi:10.4049/jimmunol.1401218.
  • Mackness BC Jaworski JA Boudanova E Park A Valente D Mauriac C Pasquier O Schmidt T Kabiri M Kandira A et al. Antibody Fc engineering for enhanced neonatal Fc receptor binding and prolonged circulation half-life. Mabs-Austin. 2019;11(7):1276–88. doi:10.1080/19420862.2019.1633883.
  • Ward ES Devanaboyina SC Ober RJ. Targeting FcRn for the modulation of antibody dynamics. Mol Immunol. 2015;67(2):131–41. doi:10.1016/j.molimm.2015.02.007.
  • Hinton PR Johlfs MG Xiong JM Hanestad K Ong KC Bullock C Keller S Tang MT Tso JY Vasquez M et al. Engineered human IgG antibodies with longer serum half-lives in primates. J Biol Chem. 2004;279(8):6213–16. doi:10.1074/jbc.C300470200.
  • Suzuki T Ishii-Watabe A Tada M Kobayashi T Kanayasu-Toyoda T Kawanishi T Yamaguchi T. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. J Immunol. 2010;184(4):1968–76. doi:10.4049/jimmunol.0903296.
  • Schlothauer T Rueger P Stracke JO Hertenberger H Fingas F Kling L Emrich T Drabner G Seeber S Auer J et al. Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies. MAbs. 2013;5(4):576–86. doi:10.4161/mabs.24981.
  • Wang W Lu P Fang Y Hamuro L Pittman T Carr B Hochman J Prueksaritanont T. Monoclonal antibodies with identical Fc sequences can bind to FcRn differentially with pharmacokinetic consequences. Drug Metab Dispos. 2011;39:1469–77. doi:10.1124/dmd.111.039453.
  • Piche-Nicholas NM Avery LB King AC Kavosi M Wang M O’Hara DM Tchistiakova L Katragadda M. Changes in complementarity-determining regions significantly alter IgG binding to the neonatal Fc receptor (FcRn) and pharmacokinetics. Mabs-Austin. 2018;10:81–94. doi:10.1080/19420862.2017.1389355.
  • Liu S Verma A Kettenberger H Richter WF Shah DK. Effect of variable domain charge on in vitro and in vivo disposition of monoclonal antibodies. Mabs-Austin. 2021;13:1993769. doi:10.1080/19420862.2021.1993769.
  • Grevys A Frick R Mester S Flem-Karlsen K Nilsen J Foss S Sand KMK Emrich T Fischer JAA Greiff V et al. Antibody variable sequences have a pronounced effect on cellular transport and plasma half-life. Iscience. 2022;25(2):103746. ARTN 103746. doi:10.1016/j.isci.2022.103746.
  • Schoch A Kettenberger H Mundigl O Winter G Engert J Heinrich J Emrich T. Charge-mediated influence of the antibody variable domain on FcRn-dependent pharmacokinetics. P Natl Acad Sci USA. 2015;112(19):5997–6002. doi:10.1073/pnas.1408766112.
  • Datta-Mannan A Thangaraju A Leung D Tang Y Witcher DR Lu JR Wroblewski VJ. Balancing charge in the complementarity-determining regions of humanized mAbs without affecting pI reduces non-specific binding and improves the pharmacokinetics. Mabs-Austin. 2015;7:483–93. doi:10.1080/19420862.2015.1016696.
  • Li B Tesar D Boswell CA Cahaya HS Wong A Zhang JH Meng YG Eigenbrot C Pantua H Diao JY et al. Framework selection can influence pharmacokinetics of a humanized therapeutic antibody through differences in molecule charge. Mabs-Austin. 2014;6(5):1255–64. doi:10.4161/mabs.29809.
  • Kraft TE Richter WF Emrich T Knaupp A Schuster M Wolfert A Kettenberger H. Heparin chromatography as an in vitro predictor for antibody clearance rate through pinocytosis. MAbs. 2020;12(1):12. Artn 1683432. doi:10.1080/19420862.2019.1683432.
  • Bernfield M Gotte M Park PW Reizes O Fitzgerald ML Lincecum J Zako M. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem. 1999;68(1):729–77. doi:10.1146/annurev.biochem.68.1.729.
  • Kelly RL Yu Y Sun TW Caffry I Lynaugh H Brown M Jain T Xu YD Wittrup KD. Target-independent variable region mediated effects on antibody clearance can be FcRn independent. Mabs-Austin. 2016;8:1269–75. doi:10.1080/19420862.2016.1208330.
  • Sun Y Estevez A Schlothauer T Wecksler AT. Antigen physiochemical properties allosterically effect the IgG Fc-region and Fc neonatal receptor affinity. MAbs. 2020;12:1802135. doi:10.1080/19420862.2020.1802135.
  • Sievers SA Scharf L West AP Jr. Bjorkman PJ. Antibody engineering for increased potency breadth and half-life. Curr Opin HIV AIDS. 2015;10(3):151–59. doi:10.1097/COH.0000000000000148.
  • Rudicell RS Kwon YD Ko SY Pegu A Louder MK Georgiev IS Wu X Zhu J Boyington JC Chen X et al. Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo. J Virol. 2014;88(21):12669–82. doi:10.1128/JVI.02213-14.
  • Wu H Pfarr DS Johnson S Brewah YA Woods RM Patel NK White WI Young JF Kiener PA. Development of motavizumab an ultra-potent antibody for the prevention of respiratory syncytial virus infection in the upper and lower respiratory tract. J Mol Biol. 2007;368(3):652–65. doi:10.1016/j.jmb.2007.02.024.
  • Pepinsky RB Silvian L Berkowitz SA Farrington G Lugovskoy A Walus L Eldredge J Capili A Mi S Graff C et al. Improving the solubility of anti-LINGO-1 monoclonal antibody Li33 by isotype switching and targeted mutagenesis. Protein Sci. 2010;19(5):954–66. doi:10.1002/pro.372.
  • Wu X Yang ZY Li Y Hogerkorp CM Schief WR Seaman MS Zhou T Schmidt SD Wu L Xu L et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science. 2010;329(5993):856–61. doi:10.1126/science.1187659.
  • Huang J Kang BH Ishida E Zhou T Griesman T Sheng Z Wu F Doria-Rose NA Zhang B McKee K et al. Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth. Immunity. 2016;45(5):1108–21. doi:10.1016/j.immuni.2016.10.027.
  • Diskin R Scheid JF Marcovecchio PM West AP Jr. Klein F Gao H Gnanapragasam PN Abadir A Seaman MS Nussenzweig MC et al. Increasing the potency and breadth of an HIV antibody by using structure-based rational design. Science. 2011;334(6060):1289–93. doi:10.1126/science.1213782.
  • Liu Q Lai YT Zhang P Louder MK Pegu A Rawi R Asokan M Chen X Shen CH Chuang GY et al. Improvement of antibody functionality by structure-guided paratope engraftment. Nat Commun. 2019;10(1):721. doi:10.1038/s41467-019-08658-4.
  • Kwon YD Asokan M Gorman J Zhang B Liu Q Louder MK Lin BC McKee K Pegu A Verardi R et al. A matrix of structure-based designs yields improved VRC01-class antibodies for HIV-1 therapy and prevention. Mabs-Austin. 2021;13(1):1946918. doi:10.1080/19420862.2021.1946918.
  • Mahomed S Garrett N Capparelli E Baxter C Zuma NY Gengiah T Archary D Moore P Samsunder N Barouch DH et al. Assessing the safety and pharmacokinetics of the monoclonal antibodies VRC07-523LS and PGT121 in HIV negative women in South Africa: study protocol for the CAPRISA 012A randomised controlled phase I trial. BMJ Open. 2019;9(7):e030283. doi:10.1136/bmjopen-2019-030283.
  • Swindells MB Porter CT Couch M Hurst J Abhinandan KR Nielsen JH Macindoe G Hetherington J Martin AC. abYsis: integrated Antibody Sequence and Structure—Management Analysis and Prediction. J Mol Biol. 2017;429(3):356–64. doi:10.1016/j.jmb.2016.08.019.
  • Nakamura G Ozeki K Takesue H Tabo M Hosoya K. Prediction of Human Pharmacokinetics Profile of Monoclonal Antibody Using hFcrn Transgenic Mouse Model. Biol Pharm Bull. 2021;44(3):389–95. doi:10.1248/bpb.b20-00775.
  • Haraya K Tachibana T Nanami M Ishigai M. Application of human FcRn transgenic mice as a pharmacokinetic screening tool of monoclonal antibody. Xenobiotica. 2014;44:1127–34. doi:10.3109/00498254.2014.941963.
  • Boswell CA Tesar DB Mukhyala K Theil FP Fielder PJ Khawli LA. Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug Chem. 2010;21(12):2153–63. doi:10.1021/bc100261d.
  • Bongini L Fanelli D Piazza F De Los Rios P Sandin S Skoglund U. Freezing immunoglobulins to see them move. P Natl Acad Sci USA. 2004;101(17):6466–71. doi:10.1073/pnas.0400119101.
  • Bongini L Fanelli D Piazza F Rios PD Sandin S Skoglund U. Dynamics of antibodies from cryo-electron tomography. Biophys Chem. 2005;115(2–3):235–40. doi:10.1016/j.bpc.2004.12.037.
  • Jensen PF Larraillet V Schlothauer T Kettenberger H Hilger M Rand KD. Investigating the Interaction between the Neonatal Fc Receptor and Monoclonal Antibody Variants by Hydrogen/Deuterium Exchange Mass Spectrometry. Molecular & Cellular Proteomics: MCP. 2015;14(1):148–61. doi:10.1074/mcp.M114.042044.
  • Jensen PF Schoch A Larraillet V Hilger M Schlothauer T Emrich T Rand KD. A Two-pronged Binding Mechanism of IgG to the Neonatal Fc Receptor Controls Complex Stability and IgG Serum Half-life. Molecular & Cellular Proteomics: MCP. 2017;16(3):451–56. doi:10.1074/mcp.M116.064675.
  • Neuber T Frese K Jaehrling J Jager S Daubert D Felderer K Linnemann M Hohne A Kaden S Kolln J et al. Characterization and screening of IgG binding to the neonatal Fc receptor. Mabs-Austin. 2014;6(4):928–42. doi:10.4161/mabs.28744.
  • Igawa T Tsunoda H Tachibana T Maeda A Mimoto F Moriyama C Nanami M Sekimori Y Nabuchi Y Aso Y et al. Reduced elimination of IgG antibodies by engineering the variable region. Protein Eng Des Sel. 2010;23(5):385–92. doi:10.1093/protein/gzq009.
  • Kong R Duan H Sheng Z Xu K Acharya P Chen X Cheng C Dingens AS Gorman J Sastry M et al. Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization. Cell. 2019;178(3):567–84 e19. doi:10.1016/j.cell.2019.06.030.
  • Sarzotti-Kelsoe M Bailer RT Turk E Lin CL Bilska M Greene KM Gao H Todd CA Ozaki DA Seaman MS et al. Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. J Immunol Methods. 2014;409:131–46. doi:10.1016/j.jim.2013.11.022.
  • Doria-Rose NA Louder MK Yang Z O’Dell S Nason M Schmidt SD McKee K Seaman MS Bailer RT Mascola JR. HIV-1 neutralization coverage is improved by combining monoclonal antibodies that target independent epitopes. J Virol. 2012;86:3393–97. doi:10.1128/JVI.06745-11.
  • Dunbar J Deane CM. ANARCI: antigen receptor numbering and receptor classification. Bioinformatics. 2016;32:298–300. doi:10.1093/bioinformatics/btv552.
  • Swindells MB Porter CT Couch M Hurst J Abhinandan KR Nielsen JH Macindoe G Hetherington J Martin ACR. abYsis: integrated Antibody Sequence and Structure—Management Analysis and Prediction. J Mol Biol. 2017;429(3):356–64. doi:10.1016/j.jmb.2016.08.019.
  • Kwon YD, Finzi A, Wu XL, Dogo-Isonagie C, Lee LK, Moore LR, Schmidt SD, Stuckey J, Yang YP, and Zhou TQ et al. Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops. P Natl Acad Sci USA. 2012;109(15):5663–68. doi:10.1073/pnas.1112391109.
  • Krissinel E Henrick K. Inference of macromolecular assemblies from crystalline state. J Mol Biol. 2007;372(3):774–97. doi:10.1016/j.jmb.2007.05.022.
  • Rice P Longden I Bleasby A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 2000;16(6):276–77. doi:10.1016/s0168-9525(00)02024-2.