2,384
Views
2
CrossRef citations to date
0
Altmetric
Report

Biophysical characterization of PVR family interactions and therapeutic antibody recognition to TIGIT

ORCID Icon, , , , , , , , & show all
Article: 2253788 | Received 02 Jun 2023, Accepted 25 Aug 2023, Published online: 07 Sep 2023

References

  • Korman AJ, Peggs KS, Allison JP. Checkpoint blockade in cancer immunotherapy. Adv Immunol. 2006;90:297–10. doi:10.1016/S0065-2776(06)90008-X. PMID: 16730267.
  • Ge Z, Peppelenbosch MP, Sprengers D, Kwekkeboom J. TIGIT, the next step towards successful combination immune checkpoint therapy in cancer. Front Immunol. 2021;12:699895. doi:10.3389/fimmu.2021.699895. PMID: 34367161.
  • Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44(5):989–1004. doi:10.1016/j.immuni.2016.05.001. PMID: 27192565.
  • Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H, et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol. 2009;10:48–57. doi:10.1038/ni.1674. PMID: 19011627.
  • Boles KS, Vermi W, Facchetti F, Fuchs A, Wilson TJ, Diacovo TG, Cella M, Colonna M. A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC. Eur J Immunol. 2009;39(3):695–703. doi:10.1002/eji.200839116. PMID: 19197944.
  • Casado JG, Pawelec G, Morgado S, Sanchez-Correa B, Delgado E, Gayoso I, Duran E, Solana R, Tarazona R. Expression of adhesion molecules and ligands for activating and costimulatory receptors involved in cell-mediated cytotoxicity in a large panel of human melanoma cell lines. Cancer Immunol Immunother. 2009;58(9):1517–26. doi:10.1007/s00262-009-0682-y. PMID: 19259667.
  • Masson D, Jarry A, Baury B, Blanchardie P, Laboisse C, Lustenberger P, Denis MG. Overexpression of the CD155 gene in human colorectal carcinoma. Gut. 2001;49(2):236–40. doi:10.1136/gut.49.2.236. PMID: 11454801.
  • Nakai R, Maniwa Y, Tanaka Y, Nishio W, Yoshimura M, Okita Y, Ohbayashi C, Satoh N, Ogita H, Takai Y, et al. Overexpression of Necl-5 correlates with unfavorable prognosis in patients with lung adenocarcinoma. Cancer Sci. 2010;101(5):1326–30. doi:10.1111/j.1349-7006.2010.01530.x. PMID: 20331633.
  • Deuss FA, Gully BS, Rossjohn J, Berry R. Recognition of nectin-2 by the natural killer cell receptor T cell immunoglobulin and ITIM domain (TIGIT). J Biol Chem. 2017;292:11413–22. doi:10.1074/jbc.M117.786483. PMID: 28515320.
  • Saha S, Sparkes A, Matus EI, Lee P, Gariepy J. The IgV domain of the poliovirus receptor alone is immunosuppressive and binds to its receptors with comparable affinity. Sci Rep. 2023;13(1):4609. doi:10.1038/s41598-023-30999-w. PMID: 36944702.
  • Lee PS, Chau B, Barman I, Bee C, Jashnani A, Hogan JM, Aguilar B, Dollinger G, Rajpal A, Strop P. Antibody blockade of CD96 by distinct molecular mechanisms. MAbs. 2021;13(1):1979800. doi:10.1080/19420862.2021.1979800. PMID: 34595996.
  • Harrison OJ, Vendome J, Brasch J, Jin X, Hong S, Katsamba PS, Ahlsen G, Troyanovsky RB, Troyanovsky SM, Honig B, et al. Nectin ectodomain structures reveal a canonical adhesive interface. Nature Structural & Molecular Biology. 2012;19(9):906–15. doi:10.1038/nsmb.2366. PMID: 22902367.
  • Samanta D, Guo H, Rubinstein R, Ramagopal UA, Almo SC. Structural, mutational and biophysical studies reveal a canonical mode of molecular recognition between immune receptor TIGIT and nectin-2. Mol Immunol. 2017;81:151–59. doi:10.1016/j.molimm.2016.12.003. PMID: 27978489.
  • Deuss FA, Watson GM, Fu Z, Rossjohn J, Berry R. Structural basis for CD96 immune receptor recognition of nectin-like Protein-5, CD155. Structure. 2019;27(2):219–28.e3. doi:10.1016/j.str.2018.10.023. PMID: 30528596.
  • Liu J, Qian X, Chen Z, Xu X, Gao F, Zhang S, Zhang R, Qi J, Gao GF, Yan J. Crystal structure of cell adhesion molecule nectin-2/CD112 and its binding to immune receptor DNAM-1/CD226. J Immunol. 2012;188(11):5511–20. doi:10.4049/jimmunol.1200324. PMID: 22547693.
  • Wang H, Qi J, Zhang S, Li Y, Tan S, Gao GF. Binding mode of the side-by-side two-IgV molecule CD226/DNAM-1 to its ligand CD155/Necl-5. Proc Natl Acad Sci U S A. 2019;116:988–96. doi:10.1073/pnas.1815716116. PMID: 30591568.
  • Stengel KF, Harden-Bowles K, Yu X, Rouge L, Yin J, Comps-Agrar L, Wiesmann C, Bazan JF, Eaton DL, Grogan JL. Structure of TIGIT immunoreceptor bound to poliovirus receptor reveals a cell–cell adhesion and signaling mechanism that requires cis-trans receptor clustering. Proc Natl Acad Sci U S A. 2012;109(14):5399–404. doi:10.1073/pnas.1120606109. PMID: 22421438.
  • White M, Kumar S, Chan C, Liang S, Stapleton L, Drake A, Gozlan Y, Vaknin I, Sameah-Greenwald S, Dassa L, et al. Inventor; anti-TIGIT Antibodies, Anti-PVRIG antibodies and combinations there of. 2018. WO 2018/033798 A1.
  • Jeong BS, Nam H, Lee J, Park HY, Cho KJ, Sheen JH, Song E, Oh M, Lee S, Choi H, et al. Structural and functional characterization of a monoclonal antibody blocking TIGIT. MAbs. 2022;14(1):2013750. doi:10.1080/19420862.2021.2013750. PMID: 35090381.
  • Grogan JL, Johnston RJ, Wu Y, Liang W, Lupardus P, Yadav M, Seshasayee D, Hazen M. Inventor; Anti-TIGIT antibodies and methods of use. 2017. WO2017053748A2.
  • Williams S, Laface D, Fayadat-Dilman L, Raghunathan R, Liang L, Seghezzi W. Inventor; anti-TIGIT antibodies. 2016. WO/2016/028656.
  • Tso Y, Tsurushita N, Duramad O. Inventor; ANTIBODIES to TIGIT. 2017. WO/2017/152088A1.
  • Chauvin JM, Pagliano O, Fourcade J, Sun Z, Wang H, Sander C, Kirkwood JM, Chen TH, Maurer M, Korman AJ, et al. TIGIT and PD-1 impair tumor antigen–specific CD8+ T cells in melanoma patients. J Clin Invest. 2015;125(5):2046–58. doi:10.1172/JCI80445. PMID: 25866972.
  • Jin HS, Park Y. Hitting the complexity of the TIGIT-CD96-CD112R-CD226 axis for next-generation cancer immunotherapy. BMB Rep. 2021;54(1):2–11. PMID: 33298247. https://www.ncbi.nlm.nih.gov/pubmed/33298247.
  • van der Merwe PA, Bodian DL, Daenke S, Linsley P, Davis SJ. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J Exp Med. 1997;185(3):393–404. doi:10.1084/jem.185.3.393.
  • Collins AV, Brodie DW, Gilbert RJ, Iaboni A, Manso-Sancho R, Walse B, Stuart DI, van der Merwe PA, Davis SJ. The interaction properties of costimulatory molecules revisited. Immunity. 2002;17(2):201–10. doi:10.1016/s1074-7613(02)00362-x. PMID: 12196291.
  • Chen X, Song X, Li K, Zhang T. FcgammaR-Binding is an important functional attribute for immune checkpoint antibodies in cancer immunotherapy. Front Immunol. 2019;10:292. doi:10.3389/fimmu.2019.00292. PMID: 30863404.
  • Wang X, Mathieu M, Brezski RJ. IgG Fc engineering to modulate antibody effector functions. Protein Cell. 2018;9(1):63–73. doi:10.1007/s13238-017-0473-8. PMID: 28986820.
  • Yeo J, Ko M, Lee DH, Park Y, Jin HS. TIGIT/CD226 axis regulates anti-tumor Immunity. Pharmaceuticals (Basel). 2021;14(3):200. doi:10.3390/ph14030200. PMID: 33670993.
  • Vonrhein C, Flensburg C, Keller P, Sharff A, Smart O, Paciorek W, Womack T, Bricogne G. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr D Biol Crystallogr. 2011;67(4):293–302. doi:10.1107/S0907444911007773. PMID: 21460447.
  • Kabsch W. Xds. Acta Crystallogr D Biol Crystallogr. 2010;66(2):125–32. doi:10.1107/S0907444909047337. PMID: 20124692.
  • Evans P. Scaling and assessment of data quality. Acta Crystallogr D Biol Crystallogr. 2006;62(1):72–82. doi:10.1107/S0907444905036693. PMID: 16369096.
  • Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, et al. Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr. 2011;67(4):235–42. doi:10.1107/S0907444910045749. PMID: 21460441.
  • Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010;66(1):12–21. doi:10.1107/S0907444909042073. PMID: 20057044.