2,012
Views
0
CrossRef citations to date
0
Altmetric
Report

In-situ biophysical characterization of high-concentration protein formulations using wNMR

, , , , , , , , & ORCID Icon show all
Article: 2304624 | Received 20 Sep 2023, Accepted 09 Jan 2024, Published online: 01 Feb 2024

References

  • Wang SS, Yan YS, Ho K. US FDA-approved therapeutic antibodies with high-concentration formulation: summaries and perspectives. Antib Ther. 2021;4(4):262–15. PubMed. doi:10.1093/abt/tbab027.
  • Bramham JE, Davies SA, Podmore A, Golovanov AP. Stability of a high-concentration monoclonal antibody solution produced by liquid-liquid phase separation. MAbs. 2021;13(1):1940666. From NLM. doi:10.1080/19420862.2021.1940666.
  • Roberts CJ. Protein aggregation and its impact on product quality. Curr Opin Biotechnol. 2014;30:211–17. From NLM. doi:10.1016/j.copbio.2014.08.001.
  • Jiskoot W, Hawe A, Menzen T, Volkin DB, Crommelin DJA. Ongoing challenges to develop high concentration monoclonal antibody-based formulations for subcutaneous administration: Quo Vadis? J Pharm Sci. 2022;111(4):861–867. doi:10.1016/j.xphs.2021.11.008.
  • Shire SJ. Formulation and manufacturability of biologics. Curr Opin Biotechnol. 2009;20(6):708–14. From NLM. doi:10.1016/j.copbio.2009.10.006.
  • Strickley RG, Lambert WJ. A review of formulations of commercially available antibodies. J Pharm Sci. 2021;110(7):2590–608.e2556. From NLM. doi:10.1016/j.xphs.2021.03.017.
  • Badkar AV, Gandhi RB, Davis SP, LaBarre MJ. Subcutaneous delivery of high-Dose/Volume biologics: Current status and prospect for future advancements. Drug Des Devel Ther. 2021;15:159–70. doi:10.2147/dddt.S287323. From NLM.
  • Bittner B, Richter W, Schmidt J. Subcutaneous Administration of Biotherapeutics: an overview of Current challenges and opportunities. BioDrugs. 2018;32(5):425–40. From NLM. doi: 10.1007/s40259-018-0295-0.
  • Harris RJ, Shire SJ, Winter C. Commercial manufacturing scale formulation and analytical characterization of therapeutic recombinant antibodies. Drug Dev Res. 2004;61(3):137–154. doi:10.1002/ddr.10344.
  • Shire JS, G W, Bechthold-Peters K, Andya J. Current trends in monoclonal antibody development and manufacturing. New York: Springer AAPS Press; 2010. doi:10.1007/978-0-387-76643-0.
  • Warne NW, Mahler HC. Challenges in Protein Product Development. AAPS Adv Pharm Sci Ser. 2018. doi:10.1007/978-3-319-90603-4.
  • Treuheit MJK, Andrew A, Brems, David N. 2002. Inverse relationship of protein concentration and aggregation. Pharm Res. 19(4):511–16. doi: 10.1023/A:1015108115452.
  • Holstein M, Hung J, Feroz H, Ranjan S, Du C, Ghose S, Li ZJ. Strategies for high-concentration drug substance manufacturing to facilitate subcutaneous administration: A review. Biotechnol Bioeng. 2020;117(11):3591–3606. doi:10.1002/bit.27510.
  • Wang W, I AA, Ohtake S, Yang TC, Warne NW, Mahler H-C. Introduction to high-concentration proteins. Challenges in protein product development. AAPS-Springer. 2018;38:99–123.
  • Yoneda S, Torisu T, Uchiyama S. Development of syringes and vials for delivery of biologics: current challenges and innovative solutions. Expert Opin Drug Deliv. 2021;18(4):459–70. From NLM. doi:10.1080/17425247.2021.1853699.
  • Shire SJ, Shahrokh Z, Liu J. Challenges in the development of high protein concentration formulations. J Pharm Sci. 2004;93(6):1390–1402. doi:10.1002/jps.20079.
  • Scherer TM. Cosolute effects on the Chemical Potential and interactions of an IgG1 monoclonal antibody at high concentrations. J Phys Chem B. 2013;117(8):2254–2266. doi:10.1021/jp3091717.
  • Stetefeld J, McKenna SA, Patel TR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev. 2016;8(4):409–27. From NLM. doi: 10.1007/s12551-016-0218-6.
  • Wang L, Kendrick B, Ma E. Enhanced Protein Structural Characterization Using Microfluidic Modulation Spectroscopy. Spectroscopy. 2018;33:46–52.
  • Ivancic VA, Lombardo HL, Ma E, Wikström M, Batabyal D. Advancing secondary structure characterization of monoclonal antibodies using microfluidic modulation spectroscopy. Anal Biochem. 2022;646:114629. doi:10.1016/j.ab.2022.114629.
  • Kelly SM, Price NC. The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci. 2000;1(4):349–84. From NLM. doi:10.2174/1389203003381315.
  • Siligardi G, Hussain R, Patching SG, Phillips-Jones MK. 2014. Ligand- and drug-binding studies of membrane proteins revealed through circular dichroism spectroscopy. Biochimica et Biophysica Acta (BBA) - Biomembr. 1838(1, Part A):34–42. doi: 10.1016/j.bbamem.2013.06.019.
  • Wei Y, Wahome N, Kumar P, Whitaker N, Picking WL, Middaugh CR. Effect of phosphate ion on the structure of lumazine synthase, an antigen presentation system from Bacillus anthracis. J Pharm Sci. 2018;107(3):814–823. doi:10.1016/j.xphs.2017.10.013.
  • Chennamsetty NV, Vladimir K, Veysel T, Bernhardt L. 2009. Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci U S A. 106(29):11937–42. doi: 10.1073/pnas.0904191106.
  • Allec N, Choi M, Yesupriya N, Szychowski B, White MR, Kann MG, Garcin ED, Daniel MC, Badano A. 2015. Small-angle X-ray scattering method to characterize molecular interactions: proof of concept. Sci Rep. 5(1):12085. doi: 10.1038/srep12085.
  • Altkorn RZ, Richard N. 1984. Effects of saturation on laser-induced fluorescence measurements of population and polarization. Ann Rev Phys Chem. 35(1):265–89. doi: 10.1146/annurev.pc.35.100184.001405.
  • Winters A, Cheong FC, Odete MA, Lumer J, Ruffner DB, Mishra KI, Grier DG, Philips LA. Quantitative differentiation of protein aggregates from other subvisible particles in viscous mixtures through holographic characterization. J Pharm Sci. 2020;109(8):2405–12. From NLM. doi:10.1016/j.xphs.2020.05.002.
  • Demeule B, Messick S, Shire SJ, Liu J. Characterization of particles in protein solutions: reaching the limits of current technologies. AAPS J. 2010;12(4):708–715. doi:10.1208/s12248-010-9233-x.
  • Taraban MB, DePaz RA, Lobo B, Yu YB. 2019. Use of water proton NMR to characterize protein aggregates: gauging the response and sensitivity. Anal Chem. 91(6):4107–4115. doi: 10.1021/acs.analchem.8b05733.
  • Taraban MB, Briggs KT, Yu YB. 2020. Magnetic resonance relaxometry for determination of protein concentration and aggregation. Curr Protoc Protein Sci. 99(1):e102. doi: 10.1002/cpps.102.
  • Taraban MB, Wang Y, Briggs KT, Yu YB. Inspecting insulin products using water proton NMR. I. Noninvasive vs invasive inspection. J Diabetes Sci Technol. 0(0):19322968211023806. doi:10.1177/19322968211023806.
  • Taraban MB, DePaz RA, Lobo B, Yu YB. Water proton NMR: a tool for protein aggregation characterization. Anal Chem. 2017;89(10):5494–502. From NLM. doi:10.1021/acs.analchem.7b00464.
  • Taraban MB, Truong HC, Feng Y, Jouravleva EV, Anisimov MA, Yu YB. Water proton NMR for in situ detection of insulin aggregates. J Pharm Sci. 2015;104(12):4132–41. From NLM. doi:10.1002/jps.24633.
  • Feng Y, Taraban MB, Yu YB. 2015. Water proton NMR—a sensitive probe for solute association. Chem Commun. 51(31):6804–07. doi: 10.1039/C5CC00741K.
  • Taraban MB, Truong HC, Ilavsky J, DePaz RA, Lobo B, Yu YB. 2017. Noninvasive detection of nanoparticle clustering by water proton NMR. Transl Mater Res. 4(2):025002. doi: 10.1088/2053-1613/aa7838.
  • Solomon TL, Delaglio F, Giddens JP, Marino JP, Yu YB, Taraban MB, Brinson RG. Correlated analytical and functional evaluation of higher order structure perturbations from oxidation of NISTmAb. MAbs. 2023;15(1):2160227. doi:10.1080/19420862.2022.2160227.
  • Yu YB, Feng Y, Taraban MB. Water proton NMR for noninvasive chemical analysis and drug product inspection. American Pharma Rev. 2017;20:34–39.
  • Arbogast LW, Brinson RG, Marino JP. 2015. Mapping monoclonal antibody structure by 2D 13 C NMR at natural abundance. Anal Chem. 87(7):3556–3561. doi: 10.1021/ac504804m.
  • Phyo P, Zhao X, Templeton AC, Xu W, Cheung JK, Su Y. 2021. Understanding molecular mechanisms of biologics drug delivery and stability from NMR spectroscopy. Adv Drug Deliv Rev. 174:1–29. doi:10.1016/j.addr.2021.02.007.
  • Meiboom S, Gill D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instr. 1958;29:688–691.
  • Kueltzo LA, Wang W, Randolph TW, Carpenter JF. Effects of solution conditions, processing parameters, and container materials on aggregation of a monoclonal antibody during freeze-thawing. J Pharm Sci. 2008;97(5):1801–12. From NLM. doi:10.1002/jps.21110.
  • Muneeruddin K, Thomas JJ, Salinas PA, Kaltashov IA. Characterization of small protein aggregates and oligomers using size exclusion chromatography with online detection by native electrospray ionization mass spectrometry. Anal Chem. 2014;86(21):10692–99. From NLM. doi:10.1021/ac502590h.
  • Philo JS. Is any measurement method optimal for all aggregate sizes and types? AAPS J. 2006;8(3):E564–71. From NLM. doi: 10.1208/aapsj080365.
  • Ruesch MN, Benetti L, Berkay E, Cirelli DJ, Frantz N, Gastens MH, Kelley WP, Kretsinger J, Lewis M, Novick S, et al. Strategies for setting patient-centric commercial specifications for biotherapeutic products. J Pharm Sci. 2021;110(2):771–784. doi:10.1016/j.xphs.2020.09.048.
  • Hills BP, Takacs SF, Belton PS. The effects of proteins on the Proton Nmr Transverse Relaxation-Times of water .1. Native Bovine Serum-Albumin. Mol Phys. 1989;67(4):903–18. doi:10.1080/00268978900101531.
  • Briggs KT, Taraban MB, Wang W, Yu YB. Nondestructive quantitative inspection of drug products using benchtop NMR relaxometry-the case of NovoMix® 30. Aaps Pharm Sci Tech. 2019;20(5):189. From NLM. doi:10.1208/s12249-019-1405-0.
  • Allmendinger A, Mueller R, Huwyler J, Mahler HC, Fischer S. 2015. Sterile filtration of highly concentrated protein formulations: impact of protein concentration, formulation composition, and filter material. J Pharm Sci. 104(10):3319–3329. doi: 10.1002/jps.24561.
  • Grasso R, Musumeci F, Gulino M, Scordino A, Khodarahmi R. 2018. Exploring the behaviour of water in glycerol solutions by using delayed luminescence. PloS ONE. 13(1):e0191861. doi: 10.1371/journal.pone.0191861.
  • Segur JB, Oberstar HE. 1995. Viscosity of glycerol and its aqueous solutions. Ind Eng Chem. 43(9):2117–20. doi: 10.1021/ie50501a040.
  • Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27(4):544–75. From NLM. doi: 10.1007/s11095-009-0045-6.
  • Singh SK, Kolhe P, Mehta AP, Chico SC, Lary AL, Huang M. Frozen state storage instability of a monoclonal antibody: aggregation as a consequence of trehalose crystallization and protein unfolding. Pharm Res. 2011;28(4):873–85. From NLM. doi: 10.1007/s11095-010-0343-z.
  • Wu H, Kroe-Barrett R, Singh S, Robinson AS, Roberts CJ. Competing aggregation pathways for monoclonal antibodies. FEBS Lett. 2014;588(6):936–41. From NLM. doi:10.1016/j.febslet.2014.01.051.
  • Banks DD, Latypov RF, Ketchem RR, Woodard J, Scavezze JL, Siska CC, Razinkov VI. Native-state solubility and transfer free energy as predictive tools for selecting excipients to include in protein formulation development studies. J Pharm Sci. 2012;101(8):2720–32. From NLM. doi:10.1002/jps.23219.
  • Roberts CJ. Non-native protein aggregation kinetics. Biotechnol Bioeng. 2007;98(5):927–38. From NLM. doi:10.1002/bit.21627.
  • Caflisch A. Computational models for the prediction of polypeptide aggregation propensity. Curr Opin Chem Biol. 2006;10(5):437–44. From NLM. doi:10.1016/j.cbpa.2006.07.009.
  • Bou-Abdallah F, Terpstra TR. The thermodynamic and binding properties of the transferrins as studied by isothermal titration calorimetry. Biochim Biophys Acta. 2012;1820(3):318–25. From NLM. doi:10.1016/j.bbagen.2011.07.013.
  • McPherson A, Gavira JA. Introduction to protein crystallization. Acta Crystallogr F Struct Biol Commun. 2014;70(1):2–20. From NLM. doi: 10.1107/s2053230x13033141.
  • Heller MC, Carpenter JF, Randolph TW. Protein formulation and lyophilization cycle design: prevention of damage due to freeze-concentration induced phase separation. Biotechnol Bioeng. 1999;63(2):166–74. acccessed 2022/10/20. doi:10.1002/(SICI)1097-0290(19990420)63:2<166:AID-BIT5>3.0.CO;2-H.
  • Mirasol F. Stability testing of protein therapeutics using DLS. BioPharm International, BioPharm International. 2021;34:41–43.
  • Esfandiary R, Parupudi A, Casas-Finet J, Gadre D, Sathish H. Mechanism of reversible self-association of a monoclonal antibody: role of electrostatic and hydrophobic interactions. J Pharm Sci. 2015;104(2):577–586. doi:10.1002/jps.24237.
  • Fekete S, Beck A, Veuthey JL, Guillarme D. Theory and practice of size exclusion chromatography for the analysis of protein aggregates. J Pharm Biomed Anal. 2014;101:161–73. doi:10.1016/j.jpba.2014.04.011. From NLM.
  • Hong P, Koza S, Bouvier ES. Size-exclusion chromatography for the Analysis of Protein Biotherapeutics and their aggregates. J Liq Chromatogr Relat Technol. 2012;35(20):2923–50. From NLM. doi:10.1080/10826076.2012.743724.
  • Liu J, Nguyen MD, Andya JD, Shire SJ. Reversible self-association increases the viscosity of a concentrated monoclonal antibody in aqueous solution. J Pharm Sci. 2005;94(9):1928–40. From NLM. doi:10.1002/jps.20347.
  • Sharma DK, King D, Oma P, Merchant C. Micro-flow imaging: flow microscopy applied to sub-visible particulate analysis in protein formulations. AAPS J. 2010;12(3):455–64. From NLM. doi: 10.1208/s12248-010-9205-1.
  • Taraban MB, Wang Y, Briggs KT, Yu YB. Inspecting insulin products using water proton NMR. I. Noninvasive vs invasive inspection. J Diabetes Sci Technol. 2021:19322968211023806. From NLM. doi:10.1177/19322968211023806.
  • Jiang M, Severson KA, Love JC, Madden H, Swann P, Zang L, Braatz RD. Opportunities and challenges of real-time release testing in biopharmaceutical manufacturing. Biotechnol Bioeng. 2017;114(11):2445–56. From NLM. doi:10.1002/bit.26383.
  • Kaur H, Beckman J, Zhang Y, Li ZJ, Szigeti M, Guttman A. Capillary electrophoresis and the biopharmaceutical industry: therapeutic protein analysis and characterization. TrAC Trend Anal Chem. 2021;144:116407. doi:10.1016/j.trac.2021.116407.
  • Challener CA. Tackling the challenge of HOS determination. BioPharm International. 2014;27(2):20–24.
  • Liu J, Andya JD, Shire SJ. A critical review of analytical ultracentrifugation and field flow fractionation methods for measuring protein aggregation. AAPS J. 2006;8(3):E580–89. From NLM. doi: 10.1208/aapsj080367.
  • Giddings JC. Field-flow fractio nation: analysis of macromolecular, colloidal, and particulate materials. Sci. 1993;260(5113):1456–65. From NLM. doi: 10.1126/science.8502990.
  • Briggs KT, Taraban MB, Yu YB. Quality assurance at the point-of-care: noninvasively detecting vaccine freezing variability using water proton NMR. Vaccine. 2020;38(31):4853–4860. doi:10.1016/j.vaccine.2020.05.049.
  • Bruce Yu Y, Taraban MB, Briggs KT. All vials are not the same: potential role of vaccine quality in vaccine adverse reactions. Vaccine. 2021;39(45):6565–69. From NLM. doi: 10.1016/j.vaccine.2021.09.065.
  • Yu YB, Taraban MB, Wang W, Briggs KT. Improving biopharmaceutical safety through Verification-Based Quality Control. Trends Biotechnol. 2017;35(12):1140–55. From NLM. doi:10.1016/j.tibtech.2017.08.010.
  • Yu LX, Kopcha M. The future of pharmaceutical quality and the path to get there. Int J Pharm. 2017;528(1–2):354–59. From NLM. doi:10.1016/j.ijpharm.2017.06.039.
  • Telikepalli SN, Kumru OS, Kalonia C, Esfandiary R, Joshi SB, Middaugh CR, Volkin DB. Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions. J Pharm Sci. 2014;103(3):796–809. From NLM. doi:10.1002/jps.23839.
  • Yu YB, Briggs KT, Taraban MB, Brinson RG, Marino JP. Grand Challenges in pharmaceutical research series: ridding the cold chain for biologics. Pharm Res. 2021;38(1):3–7. From NLM. doi: 10.1007/s11095-021-03008-w.
  • Rosenberg AS, Verthelyi D, Cherney BW. Managing uncertainty: a perspective on risk pertaining to product quality attributes as they bear on immunogenicity of therapeutic proteins. J Pharm Sci. 2012;101(10):3560–67. From NLM. doi:10.1002/jps.23244.
  • Yu YB, Briggs KT, Taraban MB. Preventive pharmacovigilance: timely and precise prevention of adverse events through person-level patient screening and dose-level product surveillance. Pharm Res. 2023. doi:10.1007/s11095-023-03548-3.
  • Chen K, Cheung JK, Kim HY, Leone A, Mallela K, Su YC. 2023. Enabling efficient design of biological formulations through advanced characterizations. Pharm Res. 40(6):1313–16. doi: 10.1007/s11095-023-03557-2.
  • Li M, Falk BT, Lu X, Schroder R, McCoy M, Xu W, Yin DH, Gindy ME, D’Addio SM, Su Y. 2022. Molecular Mechanism of Antimicrobial Excipient-Induced Aggregation in Parenteral Formulations of Peptide Therapeutics. Mol Pharm. 19(9):3267–3278. doi: 10.1021/acs.molpharmaceut.2c00449.
  • Li M, Reichert P, Narasimhan C, Sorman B, Xu W, Cote A, Su Y. 2022. Investigating Crystalline Protein Suspension Formulations of Pembrolizumab from MAS NMR Spectroscopy. Mol Pharm. 19(3):936–952. doi: 10.1021/acs.molpharmaceut.1c00915.
  • Li M, Koranne S, Fang R, Lu X, Williams DM, Munson EJ, Bhambhani A, Su Y. 2021. Probing Microenvironmental Acidity in Lyophilized Protein and Vaccine Formulations Using Solid-state NMR Spectroscopy. J Pharm Sci. 110(3):1292–1301. doi: 10.1016/j.xphs.2020.11.017.
  • Du Y, Li J, Xu W, Cote A, Lay-Fortenbery A, Suryanarayanan R, Su Y. 2023. Solid-State NMR Spectroscopy to Probe State and Phase Transitions in Frozen Solutions. Mol Pharm. 20(12):6380–6390. doi: 10.1021/acs.molpharmaceut.3c00764.
  • Chen Y, Ling J, Li M, Su Y, Arte KS, Mutukuri TT, Taylor LS, Munson EJ, Topp EM, Zhou QT. 2021. Understanding the impact of protein-excipient interactions on physical stability of spray-dried protein solids. Mol Pharm. 18(7):2657–68. doi: 10.1021/acs.molpharmaceut.1c00189.
  • Mutukuri TT, Ling J, Du Y, Su Y, Zhou QT. Effect of Buffer salts on physical stability of lyophilized and spray-dried protein formulations containing bovine serum albumin and trehalose. Pharm Res. 2023;40(6):1355–1371. doi:10.1007/s11095-022-03318-7.