1,015
Views
12
CrossRef citations to date
0
Altmetric
Article Addendum

Novel functions for ADF/cofilin in excitatory synapses - lessons from gene-targeted mice

Article: e1114194 | Received 29 Sep 2015, Accepted 23 Oct 2015, Published online: 19 Jan 2016

References

  • Hild G, Kalmar L, Kardos R, Nyitrai M, Bugyi B. The other side of the coin: functional and structural versatility of ADF/cofilins. Eur J Cell Biol 2014; 93:238-51; PMID:24836399; http://dx.doi.org/10.1016/j.ejcb.2013.12.001
  • Blanchoin L, Pollard TD. Mechanism of interaction of Acanthamoeba actophorin (ADF/Cofilin) with actin filaments. J Biol Chem 1999; 274:15538-46; PMID:10336448; http://dx.doi.org/10.1074/jbc.274.22.15538
  • Maciver SK, Zot HG, Pollard TD. Characterization of actin filament severing by actophorin from Acanthamoeba castellanii. J Cell Biol 1991; 115:1611-20; PMID:1757465; http://dx.doi.org/10.1083/jcb.115.6.1611
  • Van Troys M, Huyck L, Leyman S, Dhaese S, Vandekerkhove J, Ampe C. Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol 2008; 87:649-67; PMID:18499298; http://dx.doi.org/10.1016/j.ejcb.2008.04.001
  • Andrianantoandro E, Pollard TD. Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell 2006; 24:13-23; PMID:17018289; http://dx.doi.org/10.1016/j.molcel.2006.08.006
  • Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac mediated actin reorganization. Nature 1998; 393:809-12; PMID:9655398; http://dx.doi.org/10.1038/31735
  • Meng Y, Zhang Y, Tregoubov V, Janus C, Cruz L, Jackson M, Lu WY, MacDonald JF, Wang JY, Falls DL, et al. Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice. Neuron 2002; 35:121-33; PMID:12123613; http://dx.doi.org/10.1016/S0896-6273(02)00758-4
  • Racz B, Weinberg RJ. Spatial organization of cofilin in dendritic spines. Neuroscience 2006; 138:447-56; PMID:16388910; http://dx.doi.org/10.1016/j.neuroscience.2005.11.025
  • Bellenchi GC, Gurniak CB, Perlas E, Middei S, Ammassari-Teule M, Witke W. N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex. Genes Dev 2007; 21:2347-57; PMID:17875668; http://dx.doi.org/10.1101/gad.434307
  • Rust MB, Gurniak CB, Renner M, Vara H, Morando L, Gorlich A, Sassoè-Pognetto M, Banchaabouchi MA, Giustetto M, Triller A, et al. Learning, AMPA receptor mobility and synaptic plasticity depend on n-cofilin-mediated actin dynamics. EMBO J 2010; 29:1889-902; PMID:20407421; http://dx.doi.org/10.1038/emboj.2010.72
  • Görlich A, Wolf M, Zimmermann AM, Gurniak CB, Al Banchaabouchi M, Sassoe-Pognetto M, Witke W, Friauf E, Rust MB. N-Cofilin Can Compensate for the Loss of ADF in Excitatory Synapses. PloS One 2011; 6:e26789; PMID:22046357; http://dx.doi.org/10.1371/journal.pone.0026789
  • Agrawal PB, Greenleaf RS, Tomczak KK, Lehtokari VL, Wallgren-Pettersson C, Wallefeld W, Laing NG, Darras BT, Maciver SK, Dormitzer PR, et al. Nemaline myopathy with minicores caused by mutation of the CFL2 gene encoding the skeletal muscle actin-binding protein, cofilin-2. Am J Hum Genet 2007; 80:162-7; PMID:17160903; http://dx.doi.org/10.1086/510402
  • Ockeloen CW, Gilhuis HJ, Pfundt R, Kamsteeg EJ, Agrawal PB, Beggs AH, Dara Hama-Amin A, Diekstra A, Knoers NV, Lammens M, et al. Congenital myopathy caused by a novel missense mutation in the CFL2 gene. Neuromuscul Disord 2012; 22:632-9; PMID:22560515; http://dx.doi.org/10.1016/j.nmd.2012.03.008
  • Gurniak CB, Chevessier F, Jokwitz M, Jönsson F, Perlas E, Richter H, Matern G, Boyl PP, Chaponnier C, Fürst D, et al. Severe protein aggregate myopathy in a knockout mouse model points to an essential role of cofilin2 in sarcomeric actin exchange and muscle maintenance. Eur J Cell Biol 2014; 93:252-266; PMID:24598388; http://dx.doi.org/10.1016/j.ejcb.2014.01.007
  • Kremneva E, Makkonen MH, Skwarek-Maruszewska A, Gateva G, Michelot A, Dominguez R, Lappalainen P. Cofilin-2 Controls Actin Filament Length in Muscle Sarcomeres. Dev Cell 2014; 31:215-226; PMID:25373779; http://dx.doi.org/10.1016/j.devcel.2014.09.002
  • Rust MB. ADF/cofilin: a crucial regulator of synapse physiology and behavior. Cell Mol Life Sci 2015; 72:3521-9; PMID:26037722; http://dx.doi.org/10.1007/s00018-015-1941-z
  • Zhou Q, Homma KJ, Poo MM. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 2004; 44:749-57; PMID:15572107; http://dx.doi.org/10.1016/j.neuron.2004.11.011
  • Morishita W, Marie H, Malenka RC. Distinct triggering and expression mechanisms underlie LTD of AMPA and NMDA synaptic responses. Nat Neurosci 2005; 8:1043-50; PMID:16025109; http://dx.doi.org/10.1038/nn1506
  • Hotulainen P, Llano O, Smirnov S, Tanhuanpaa K, Faix J, Rivera C, Lappalainen P. Defining mechanisms of actin polymerization and depolymerization during dendritic spine morphogenesis. J Cell Biol 2009; 185:323-39; PMID:19380880; http://dx.doi.org/10.1083/jcb.200809046
  • Gu J, Lee CW, Fan Y, Komlos D, Tang X, Sun C, Yu K, Hartzell HC, Chen G, Bamburg JR, et al. ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Nat Neurosci 2010; 13:1208-15; PMID:20835250; http://dx.doi.org/10.1038/nn.2634
  • Wang Y, Dong Q, Xu XF, Feng X, Xin J, Wang DD, Yu H, Tian T, Chen ZY. Phosphorylation of cofilin regulates extinction of conditioned aversive memory via AMPAR trafficking. J Neurosci 2013; 33:6423-33; PMID:23575840; http://dx.doi.org/10.1523/JNEUROSCI.5107-12.2013
  • Bosch M, Castro J, Saneyoshi T, Matsuno H, Sur M, Hayashi Y. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron 2014; 82:444-59; PMID:24742465; http://dx.doi.org/10.1016/j.neuron.2014.03.021
  • Kessels HW, Malinow R. Synaptic AMPA receptor plasticity and behavior. Neuron 2009; 61:340-50; PMID:19217372; http://dx.doi.org/10.1016/j.neuron.2009.01.015
  • Bernstein BW, Bamburg JR. ADF/cofilin: a functional node in cell biology. Trends Cell Biol 2010; 20:187-95; PMID:20133134; http://dx.doi.org/10.1016/j.tcb.2010.01.001
  • Wolf M, Zimmermann AM, Gorlich A, Gurniak CB, Sassoe-Pognetto M, Friauf E, Witke W, Rust MB. ADF/Cofilin controls synaptic actin dynamics and regulates synaptic vesicle mobilization and exocytosis. Cereb Cortex 2015; 25:2863-75; PMID:24770705; http://dx.doi.org/10.1093/cercor/bhu081
  • Zimmermann AM, Jene T, Wolf M, Gorlich A, Gurniak CB, Sassoe-Pognetto M, Witke W, Friauf E, Rust MB. Attention-Deficit/Hyperactivity Disorder-like Phenotype in a Mouse Model with Impaired Actin Dynamics. Biol Psychiatry 2015; 78:95-106; PMID:24768258; http://dx.doi.org/10.1016/j.biopsych.2014.03.011
  • Zhou Z, Meng Y, Asrar S, Todorovski Z, Jia Z. A critical role of Rho-kinase ROCK2 in the regulation of spine and synaptic function. Neuropharmacology 2009; 56:81-9; PMID:18718479; http://dx.doi.org/10.1016/j.neuropharm.2008.07.031
  • Yuen EY, Liu W, Kafri T, van Praag H, Yan Z. Regulation of AMPA receptor channels and synaptic plasticity by cofilin phosphatase Slingshot in cortical neurons. J Physiol 2010; 588:2361-71; PMID:20442266; http://dx.doi.org/10.1113/jphysiol.2009.186353
  • McNair K, Spike R, Guilding C, Prendergast GC, Stone TW, Cobb SR, Morris BJ. A role for RhoB in synaptic plasticity and the regulation of neuronal morphology. J Neurosci 2010; 30:3508-17; PMID:20203211; http://dx.doi.org/10.1523/JNEUROSCI.5386-09.2010
  • Huang W, Zhou Z, Asrar S, Henkelman M, Xie W, Jia Z. p21-Activated kinases 1 and 3 control brain size through coordinating neuronal complexity and synaptic properties. Mol Cell Biol 2011; 31:388-403; PMID:21115725; http://dx.doi.org/10.1128/MCB.00969-10
  • Rust MB, Maritzen T. Relevance of presynaptic actin dynamics for synapse function and mouse behavior. Exp Cell Res 2015; 335:165-71; PMID:25579398; http://dx.doi.org/10.1016/j.yexcr.2014.12.020
  • Pilo Boyl P, Di Nardo A, Mulle C, Sassoe-Pognetto M, Panzanelli P, Mele A, Kneussel M, Costantini V, Perlas E, Massimi M, et al. Profilin2 contributes to synaptic vesicle exocytosis, neuronal excitability, and novelty-seeking behavior. EMBO J 2007; 26:2991-3002; PMID:17541406; http://dx.doi.org/10.1038/sj.emboj.7601737
  • Waites CL, Leal-Ortiz SA, Andlauer TF, Sigrist SJ, Garner CC. Piccolo regulates the dynamic assembly of presynaptic f-actin. J Neurosci 2011; 31:14250-63; PMID:21976510; http://dx.doi.org/10.1523/JNEUROSCI.1835-11.2011
  • Schmidt MV, Schulke JP, Liebl C, Stiess M, Avrabos C, Bock J, Wochnik GM, Davies HA, Zimmermann N, Scharf SH, et al. Tumor suppressor down-regulated in renal cell carcinoma 1 (DRR1) is a stress-induced actin bundling factor that modulates synaptic efficacy and cognition. Proc Natl Acad Sci USA 2011; 108:17213-8; PMID:21969592; http://dx.doi.org/10.1073/pnas.1103318108
  • Antshel KM, Hargrave TM, Simonescu M, Kaul P, Hendricks K, Faraone SV. Advances in understanding and treating ADHD. BMC Med 2011; 9:72; PMID:21658285; http://dx.doi.org/10.1186/1741-7015-9-72
  • Reeve SP, Bassetto L, Genova GK, Kleyner Y, Leyssen M, Jackson FR, Hassan BA. The Drosophila fragile X mental retardation protein controls actin dynamics by directly regulating profilin in the brain. Curr Biol : CB 2005; 15:1156-63; PMID:NOT_FOUND; http://dx.doi.org/10.1016/j.cub.2005.05.050
  • Won H, Mah W, Kim E, Kim JW, Hahm EK, Kim MH, Cho S, Kim J, Jang H, Cho SC, et al. GIT1 is associated with ADHD in humans and ADHD-like behaviors in mice. Nat Med 2011; 17:566-72; PMID:21499268; http://dx.doi.org/10.1038/nm.2330
  • Durand CM, Perroy J, Loll F, Perrais D, Fagni L, Bourgeron T, Montcouquiol M, Sans N. SHANK3 mutations identified in autism lead to modification of dendritic spine morphology via an actin-dependent mechanism. Mol Psychiatry 2012; 17:71-84; PMID:21606927; http://dx.doi.org/10.1038/mp.2011.57
  • Duffney LJ, Wei J, Cheng J, Liu W, Smith KR, Kittler JT, Yan Z. Shank3 deficiency induces NMDA receptor hypofunction via an actin-dependent mechanism. J Neurosci 2013; 33:15767-78; PMID:24089484; http://dx.doi.org/10.1523/JNEUROSCI.1175-13.2013
  • Steinecke A, Gampe C, Nitzsche F, Bolz J. DISC1 knockdown impairs the tangential migration of cortical interneurons by affecting the actin cytoskeleton. Front Cell Neurosci 2014; 8:190; PMID:25071449; http://dx.doi.org/10.3389/fncel.2014.00190
  • Peykov S, Berkel S, Schoen M, Weiss K, Degenhardt F, Strohmaier J, Weiss B, Proepper C, Schratt G, Nöthen MM, et al. Identification and functional characterization of rare SHANK2 variants in schizophrenia. Mol Psychiatry 2015; 20:1489-98; http://dx.doi.org/10.1038/mp.2014.172
  • Duffney LJ, Zhong P, Wei J, Matas E, Cheng J, Qin L, Ma K, Dietz DM, Kajiwara Y, Buxbaum JD, et al. Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators. Cell Rep 2015; 11(9):1400-13; PMID:26027926