1,734
Views
22
CrossRef citations to date
0
Altmetric
Short Communication

Metabolic pathway redundancy within the apicomplexan-dinoflagellate radiation argues against an ancient chromalveolate plastid

, , &
Article: e1116653 | Received 12 Oct 2015, Accepted 30 Oct 2015, Published online: 10 Feb 2016

References

  • Waller RF, Keeling PJ, Donald RG, Striepen B, Handman E, Lang-Unnasch N, Cowman AF, Besra GS, Roos DS, McFadden GI. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc Natl Acad Sci USA 1998; 95:12352-7; PMID:9770490; http://dx.doi.org/10.1073/pnas.95.21.12352
  • Jomaa H, Wiesner J, Sanderbrand S, Altincicek B, Weidemeyer C, Hintz M, Türbachova I, Eberl M, Zeidler J, Lichtenthaler HK, et al. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 1999; 285:1573-6; PMID:10477522; http://dx.doi.org/10.1126/science.285.5433.1573
  • Yu M, Kumar TRS, Nkrumah LJ, Coppi A, Retzlaff S, Li CD, Kelly BJ, Moura PA, Lakshmanan V, Freundlich JS, et al. The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. Cell Host Microbe 2008; 4:567-78; PMID:19064257; http://dx.doi.org/10.1016/j.chom.2008.11.001
  • Yeh E, DeRisi JL. Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. Plos Biol 2011; 9:e1001138; PMID:21912516; http://dx.doi.org/10.1371/journal.pbio.1001138
  • Ralph SA, van Dooren GG, Waller RF, Crawford MJ, Fraunholz MJ, Foth BJ, Tonkin CJ, Roos DS, McFadden GI. Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2004; 2:203-16; PMID:15083156; http://dx.doi.org/10.1038/nrmicro843
  • Seeber F, Soldati-Favre D. Metabolic pathways in the apicoplast of apicomplexa. Int Rev Cell Mol Biol 2010; 281:161-228; PMID:20460186; http://dx.doi.org/10.1016/S1937-6448(10)81005-6
  • Gornik SG, Febrimarsa, Cassin AM, Macrae JI, Ramaprasad A, Rchiad Z, McConville MJ, Bacic A, McFadden GI, Pain A, et al. Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci USA 2015; 112:5767-72
  • Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, Puiu D, Manque P, Akiyoshi D, Mackey AJ, et al. The genome of Cryptosporidium hominis. Nature 2004; 431:1107-12; PMID:15510150; http://dx.doi.org/10.1038/nature02977
  • Janouškovec J, Tikhonenkov DV, Burki F, Howe AT, Kolisko M, Mylnikov AP, Keeling PJ. Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc Natl Acad Sci USA 2015; 112:10200-7; http://dx.doi.org/10.1073/pnas.1423790112
  • Woo YH, Ansari H, Otto TD, Klinger CM, Kolisko M, Michálek J, Saxena A, Shanmugam D, Tayyrov A, Veluchamy A, et al. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. eLife 2015; 4:e06974; PMID:26175406; http://dx.doi.org/10.7554/eLife.06974
  • Bentlage B, Rogers TS, Bachvaroff TR, Delwiche CF. Complex ancestries of isoprenoid synthesis in dinoflagellates. J Euk Micro 2015; 63:123-137
  • Eisen JA, Coyne RS, Wu M, Wu D, Thiagarajan M, Wortman JR, Badger JH, Ren Q, Amedeo P, Jones KM, et al. Macronuclear genome sequence of the ciliate Tetrahymena thermophila, a model eukaryote. Plos Biol 2006; 4:e286; PMID:16933976; http://dx.doi.org/10.1371/journal.pbio.0040286
  • Hudson AO, Singh BK, Leustek T, Gilvarg C. An LL-diaminopimelate aminotransferase defines a novel variant of the lysine biosynthesis pathway in plants. Plant Physiol 2006; 140:292-301; PMID:16361515; http://dx.doi.org/10.1104/pp.105.072629
  • McCoy AJ, Adams NE, Hudson AO, Gilvarg C, Leustek T, Maurelli AT. L, L-diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine. Proc Natl Acad Sci USA 2006; 103:17909-14; PMID:17093042; http://dx.doi.org/10.1073/pnas.0608643103
  • Janouškovec J, Tikhonenkov DV, Mikhailov KV, Simdyanov TG, Aleoshin VV, Mylnikov AP, Keeling PJ. Colponemids represent multiple ancient alveolate lineages. Curr Biol 2013; 23:2546-52; http://dx.doi.org/10.1016/j.cub.2013.10.062
  • Tikhonenkov DV, Janouškovec J, Mylnikov AP, Mikhailov KV, Simdyanov TG, Aleoshin VV, Keeling PJ. Description of Colponema vietnamica spn. and Acavomonas peruviana n. gen. n. sp., Two new alveolate phyla (Colponemidia nom. nov. and Acavomonidia nom. nov.) and their contributions to reconstructing the ancestral state of alveolates and eukaryotes. Plos One 2014; 9:e95467; PMID:24740116; http://dx.doi.org/10.1371/journal.pone.0095467
  • Puerta MS, Delwiche CF. A hypothesis for plastid evolution in chromalveolates. J Phycol 2008; 44:1097-107; http://dx.doi.org/10.1111/j.1529-8817.2008.00559.x
  • Bodył A, Stiller JW, Mackiewicz P. Chromalveolate plastids: direct descent or multiple endosymbioses? Trends Ecol Evol 2009; 24:119-21; PMID:19200617; http://dx.doi.org/10.1016/j.tree.2008.11.003
  • Baurain D, Brinkmann H, Petersen J, Rodríguez-Ezpeleta N, Stechmann A, Demoulin V, Roger AJ, Burger G, Lang BF, Philippe H. Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol 2010; 27:1698-709; PMID:20194427; http://dx.doi.org/10.1093/molbev/msq059
  • Petersen J, Ludewig A-K, Michael V, Bunk B, Jarek M, Baurain D, Brinkmann H. Chromera velia, endosymbioses and the rhodoplex hypothesis—plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Gen Biol Evol 2014; 6:666-84; http://dx.doi.org/10.1093/gbe/evu043
  • Stiller JW. Toward an empirical framework for interpreting plastid evolution. J Phycol 2014; 50:462-471.
  • Stiller JW, Schreiber J, Yue J, Guo H, Ding Q, Huang J. The evolution of photosynthesis in chromist algae through serial endosymbioses. Nat Commun 2014; 5:5764; PMID:25493338; http://dx.doi.org/10.1038/ncomms6764
  • Ševčíková T, Horák A, Klimeš V, Zbránková V, Demir-Hilton E, Sudek S, Jenkins J, Schmutz J, Přibyl P, Fousek J, et al. Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci Rep 2015; 5:10134; http://dx.doi.org/10.1038/srep10134
  • Gould SB, Maier UG, Martin WF. Protein import and the origin of red complex plastids. Curr Biol 2015; 25:R515-21; PMID:26079086; http://dx.doi.org/10.1016/j.cub.2015.04.033
  • Stork S, Moog D, Przyborski JM, Wilhelmi I, Zauner S, Maier UG. Distribution of the SELMA translocon in secondary plastids of red algal origin and predicted uncoupling of ubiquitin-dependent translocation from degradation. Euk Cell 2012; 11:1472-81; http://dx.doi.org/10.1128/EC.00183-12
  • Burki F, Shalchian-Tabrizi K, Minge M, Skjæveland Å, Nikolaev SI, Jakobsen KS, Pawlowski J. Phylogenomics reshuffles the eukaryotic supergroups. Plos One 2007; 2:e790; PMID:17726520; http://dx.doi.org/10.1371/journal.pone.0000790
  • Burki F, Okamoto N, Pombert JF, Keeling PJ. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc Biol Sci 2012; 279:2246-54; PMID:22298847; http://dx.doi.org/10.1098/rspb.2011.2301