3,485
Views
25
CrossRef citations to date
0
Altmetric
Review

Inter-organelle ER-endolysosomal contact sites in metabolism and disease across evolution

, , &
Article: e1156278 | Received 08 Feb 2016, Accepted 13 Feb 2016, Published online: 08 Mar 2016

References

  • Porter KR, Palade GE. Studies on the endoplasmic reticulum. J Biophys Biochem Cytol 1957; 3:269-300; PMID:13438910; http://dx.doi.org/10.1083/jcb.3.2.269
  • Phillips MJ, Voeltz GK. Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol advance online publication 2015; 17(2):69-82; PMID:26627931
  • Raiborg C, Wenzel EM, Stenmark H. ER–endosome contact sites: molecular compositions and functions. EMBO J 2015; 34:1848-58; PMID:26041457; http://dx.doi.org/10.15252/embj.201591481
  • Wijdeven RH, Jongsma MLM, Neefjes J, Berlin I, ER contact sites direct late endosome transport. Bioessays 2015; 37:1298-302; PMID:26440125; http://dx.doi.org/10.1002/bies.201500095
  • Stefan CJ, Manford AG, Emr SD. ER-PM connections: sites of information transfer and inter-organelle communication. Curr Opin Cell Biol 2013; 25:434-42; PMID:23522446; http://dx.doi.org/10.1016/j.ceb.2013.02.020
  • Pan X, Roberts P, Chen Y, Kvam E, Shulga N, Huang K, Lemmon S, Goldfarb DS. Nucleus–vacuole junctions in saccharomyces cerevisiae Are formed through the direct interaction of Vac8p with Nvj1p, Mol. Biol. Cell. 2000; 11:2445-57; PMID:10888680; http://dx.doi.org/10.1091/mbc.11.7.2445
  • Toulmay A, Prinz WA. A conserved membrane-binding domain targets proteins to organelle contact sites. J Cell Sci 2012; 125:49-58; PMID:22250200; http://dx.doi.org/10.1242/jcs.085118
  • Kvam E, Goldfarb DS. Nvj1p is the outer-nuclear-membrane receptor for oxysterol-binding protein homolog Osh1p in Saccharomyces cerevisiae. J Cell Sci 2004; 117:4959-68; PMID:15367582; http://dx.doi.org/10.1242/jcs.01372
  • Peng Y, Tang F, Weisman LS. Palmitoylation plays a role in targeting Vac8p to specific membrane subdomains. Traffic 2006; 7:1378-87; PMID:16978392; http://dx.doi.org/10.1111/j.1600-0854.2006.00472.x
  • Schauder CM, Wu X, Saheki Y, Narayanaswamy P, Torta F, Wenk MR, De Camilli P, Reinisch KM. Structure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer. Nature 2014; 510:552-5; PMID:24847877; http://dx.doi.org/10.1038/nature13269
  • Manford AG, Stefan CJ, Yuan HL, Macgurn JA, Emr SD. ER-to-plasma membrane tethering proteins regulate cell signaling and ER morphology Dev Cell 2012; 23:1129-40; PMID:23237950; http://dx.doi.org/10.1016/j.devcel.2012.11.004
  • Giordano F, Saheki Y, Idevall-Hagren O, Colombo SF, Pirruccello M, Milosevic I, Gracheva EO, Bagriantsev SN, Borgese N, De Camilli P. PI(4,5)P(2)-dependent and Ca(2+)-regulated ER-PM interactions mediated by the extended synaptotagmins. Cell 2013; 153:1494-509; PMID:23791178; http://dx.doi.org/10.1016/j.cell.2013.05.026
  • Tavassoli S, Chao JT, Young BP, Cox RC, Prinz WA, de Kroon AI, Loewen CJ. Plasma membrane–endoplasmic reticulum contact sites regulate phosphatidylcholine synthesis. EMBO Rep 2013; 14:434-40; PMID:23519169; http://dx.doi.org/10.1038/embor.2013.36
  • Nishimura AL, Mitne-Neto M, Silva HCA, Richieri-Costa A, Middleton S, Cascio D, Kok F, Oliveira JR, Gillingwater T, Webb J, et al. A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. Am J Hum Genet 2004; 75:822-31; PMID:15372378; http://dx.doi.org/10.1086/425287
  • Abe K, Ohno Y, Sassa T, Taguchi R, Çalışkan M, Ober C, Kihara A. Mutation for nonsyndromic mental retardation in the trans-2-enoyl-CoA reductase TER gene involved in fatty acid elongation impairs the enzyme activity and stability, leading to change in sphingolipid profile. J Biol Chem 2013; 288:36741-9; PMID:24220030; http://dx.doi.org/10.1074/jbc.M113.493221
  • Kvam E, Gable K, Dunn TM, Goldfarb DS. Targeting of Tsc13p to nucleus-vacuole junctions: a role for very-long-chain fatty acids in the biogenesis of microautophagic vesicles Mol Biol Cell 2005; 16:3987-98; PMID:15958487; http://dx.doi.org/10.1091/mbc.E05-04-0290
  • Olkkonen VM, Béaslas O, Nissilä E, Oxysterols and their cellular effectors. Biomolecules 2012; 2:76-103; PMID:24970128; http://dx.doi.org/10.3390/biom2010076
  • Henne WM, Zhu L, Balogi Z, Stefan C, Pleiss JA, Emr SD. Mdm1/Snx13 is a novel ER–endolysosomal interorganelle tethering protein, J Cell Biol 2015; 210:541-51; PMID:26283797; http://dx.doi.org/10.1083/jcb.201503088
  • Akizu N, Cantagrel V, Zaki MS, Al-Gazali L, Wang X, Rosti RO, Dikoglu E, Gelot AB, Rosti B, Vaux KK, et al., Biallelic mutations in SNX14 cause a syndromic form of cerebellar atrophy and lysosome-autophagosome dysfunction. Nat Genet 2015; 47:528-34; PMID:25848753; http://dx.doi.org/10.1038/ng.3256
  • Thomas AC, Williams H, Setó-Salvia N, Bacchelli C, Jenkins D, O'Sullivan M, Mengrelis K, Ishida M, Ocaka L, Chanudet E, et al., Mutations in SNX14 cause a distinctive autosomal-recessive cerebellar ataxia and intellectual disability syndrome. Am J Hum Genet 2014; 95:611-21; PMID:25439728; http://dx.doi.org/10.1016/j.ajhg.2014.10.007
  • Suh JM, Stenesen D, Peters JM, Inoue A, Cade A, Graff JM. An RGS-Containing sorting nexin controls drosophila lifespan. PLoS One 2008; 3:e2152; PMID:18478054; http://dx.doi.org/10.1371/journal.pone.0002152
  • Murley A, Sarsam RD, Toulmay A, Yamada J, Prinz WA, Nunnari J. Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts, J Cell Biol 2015; 209:539-48; PMID:25987606; http://dx.doi.org/10.1083/jcb.201502033
  • Gatta AT, Wong LH, Sere YY, Calderón-Noreña DM, Cockcroft S, Menon AK, Levine TP. A new family of StART domain proteins at membrane contact sites has a role in ER-PM sterol transport Elife 2015; 4; PMID:26001273; http://dx.doi.org/10.7554/eLife.07253
  • Elbaz-Alon Y, Eisenberg-Bord M, Shinder V, Stiller SB, Shimoni E, Wiedemann N, Geiger T, Schuldiner M. Lam6 Regulates the Extent of Contacts between Organelles. Cell Rep 2015; 12:7-14; PMID:26119743; http://dx.doi.org/10.1016/j.celrep.2015.06.022
  • Lang AB, Peter ATJ, Walter P, Kornmann B, ER–mitochondrial junctions can be bypassed by dominant mutations in the endosomal protein Vps13. J Cell Biol 2015; 210:883-90; PMID:26370498; http://dx.doi.org/10.1083/jcb.201502105
  • Velayos-Baeza A, Vettori A, Copley RR, Dobson-Stone C, Monaco AP. Analysis of the human VPS13 gene family. Genomics 2004; 84:536-49; PMID:15498460; http://dx.doi.org/10.1016/j.ygeno.2004.04.012
  • Bharucha KN. The epicurean fly: using Drosophila melanogaster to study metabolism. Pediatr Res 2009; 65:132-7; PMID:18978647; http://dx.doi.org/10.1203/PDR.0b013e318191fc68
  • Owusu-Ansah E, Perrimon N. Modeling metabolic homeostasis and nutrient sensing in Drosophila: implications for aging and metabolic diseases. Dis Model Mech 2014; 7:343-50; PMID:24609035; http://dx.doi.org/10.1242/dmm.012989
  • Schlegel A, Stainier DYR. Lessons from “Lower” Organisms: What Worms, Flies, and Zebrafish Can Teach Us about Human Energy Metabolism. PLoS Genet 2007; 3:e199; PMID:18081423; http://dx.doi.org/10.1371/journal.pgen.0030199
  • Ratnaparkhi A, Lawless GM, Schweizer FE, Golshani P, Jackson GR. A Drosophila model of ALS: human ALS-associated mutation in VAP33A suggests a dominant negative mechanism. PLoS One 2008; 3:e2334; PMID:18523548; http://dx.doi.org/10.1371/journal.pone.0002334
  • Kramer J, Hawley RS. The spindle-associated transmembrane protein Axs identifies a membranous structure ensheathing the meiotic spindle, Nat. Cell Biol 2003; 5:261-3; PMID:12646877; http://dx.doi.org/10.1038/ncb944
  • Eid JP, Arias A, Robertson H, Hime GR, Dziadek M. The Drosophila STIM1 orthologue, dSTIM, has roles in cell fate specification and tissue patterning. BMC Dev Biol 2008; 8:104; PMID:18950512; http://dx.doi.org/10.1186/1471-213X-8-104
  • Liou J, Fivaz M, Inoue T, Meyer T. Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion. Proc Natl Acad Sci USA 2007; 104:9301-6; PMID:17517596; http://dx.doi.org/10.1073/pnas.0702866104
  • Fernandez-Funez P, Nino-Rosales ML, de Gouyon B, She WC, Luchak JM, Martinez P, Turiegano E, Benito J, Capovilla M, Skinner PJ, et al. Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 2000; 408:101-6; PMID:11081516; http://dx.doi.org/10.1038/35040584
  • Dorman JB, Albinder B, Shroyer T, Kenyon C. The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 1995; 141:1399-406; PMID:8601482
  • Broughton S, Alic N, Slack C, Bass T, Ikeya T, Vinti G, Tommasi AM, Driege Y, Hafen E, Partridge L. Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs. PLoS One 2008; 3:e3721; PMID:19005568; http://dx.doi.org/10.1371/journal.pone.0003721
  • Kannan K, Fridell YWC. Functional implications of Drosophila insulin-like peptides in metabolism, aging, and dietary restriction Front Physiol 2013; 4:288; PMID:24137131; http://dx.doi.org/10.3389/fphys.2013.00288
  • Géminard C, Rulifson EJ, Léopold P. Remote control of insulin secretion by fat cells in Drosophila. Cell Metab 2009; 10:199-207; http://dx.doi.org/10.1016/j.cmet.2009.08.002
  • Grönke S, Clarke DF, Broughton S, Andrews TD, Partridge L. Molecular Evolution and Functional Characterization of Drosophila Insulin-Like Peptides. PLoS Genet 2010; 6:e1000857; PMID:20195512; http://dx.doi.org/10.1371/journal.pgen.1000857
  • Baker KD, Thummel CS. Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila Cell Metab 2007; 6:257-66; PMID:17908555; http://dx.doi.org/10.1016/j.cmet.2007.09.002
  • Kim SK, Rulifson EJ. Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature 2004; 431 316-20; PMID:15372035; http://dx.doi.org/10.1038/nature02897
  • Ugrankar R, Berglund E, Akdemir F, Tran C, Kim MS, Noh J, Schneider R, Ebert B, Graff JM. Drosophila glucome screening identifies Ck1alpha as a regulator of mammalian glucose metabolism. Nat Commun 2015; 6:7102; PMID:25994086; http://dx.doi.org/10.1038/ncomms8102
  • Leopold P, Perrimon N. Drosophila and the genetics of the internal milieu. Nature 2007; 450:186-8; PMID:17994083; http://dx.doi.org/10.1038/nature06286
  • Grönke S, Mildner A, Fellert S, Tennagels N, Petry S, Müller G, Jäckle H, Kühnlein RP. Brummer lipase is an evolutionary conserved fat storage regulator in Drosophila. Cell Metab 2005; 1:323-30; PMID:16054079; http://dx.doi.org/10.1016/j.cmet.2005.04.003
  • Teixeira L, Rabouille C, Rørth P, Ephrussi A, Vanzo NF. Drosophila Perilipin/ADRP homologue Lsd2 regulates lipid metabolism. Mech Dev 2003; 120:1071-81; PMID:14550535; http://dx.doi.org/10.1016/S0925-4773(03)00158-8
  • Kühnlein RP. Lipid droplet-based storage fat metabolism in Drosophila. J Lipid Res 2012; 53:1430-6; PMID:22566574; http://dx.doi.org/10.1194/jlr.R024299
  • Singh R, Cuervo AM, Singh R, Cuervo AM, Lipophagy: connecting autophagy and lipid metabolism. Int J Cell Biol 2012; 2012:e282041
  • Tatar M, Post S, Yu K. Nutrient control of Drosophila longevity. Trends Endocrinol Metab 2014; 25:509-17; PMID:24685228; http://dx.doi.org/10.1016/j.tem.2014.02.006
  • Stenesen D, Suh JM, Seo J, Yu K, Lee KS, Kim JS, Min KJ, Graff JM. Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab 2013; 17:101-12; PMID:23312286; http://dx.doi.org/10.1016/j.cmet.2012.12.006
  • Barzilai N, Huffman DM, Muzumdar RH, Bartke A. The critical role of metabolic pathways in aging. Diabetes 2012; 61:1315-22; PMID:22618766; http://dx.doi.org/10.2337/db11-1300
  • Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 2010; 90:1383-435; PMID:20959619; http://dx.doi.org/10.1152/physrev.00030.2009
  • Rubinsztein DC, Mariño G, Kroemer G, Autophagy and aging. Cell 2011; 146:682-95; PMID:21884931; http://dx.doi.org/10.1016/j.cell.2011.07.030
  • Bergmann A. Autophagy and Cell Death: No Longer at Odds. Cell 2007; 131:1032-4; PMID:18083090; http://dx.doi.org/10.1016/j.cell.2007.11.027
  • Markaki M, Tavernarakis N. Metabolic control by target of rapamycin and autophagy during ageing - a mini-review. Gerontology 2013; 59:340-8; PMID:23594965; http://dx.doi.org/10.1159/000348599
  • Madeo F, Zimmermann A, Maiuri MC, Kroemer G. Essential role for autophagy in life span extension. J Clin Invest 2015; 125:85-93; PMID:25654554; http://dx.doi.org/10.1172/JCI73946
  • Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ. Autophagy regulates lipid metabolism. Nature 2009; 458:1131-5; PMID:19339967; http://dx.doi.org/10.1038/nature07976
  • Folick A, Oakley HD, Yu Y, Armstrong EH, Kumari M, Sanor L, Moore DD, Ortlund EA, Zechner R, Wang MC. Aging. Lysosomal signaling molecules regulate longevity in Caenorhabditis elegans. Science 2015; 347:83-6; PMID:25554789; http://dx.doi.org/10.1126/science.1258857
  • Gems D, Partridge L. Genetics of longevity in model organisms: debates and paradigm shifts. Annu Rev Physiol 2013; 75:621-44; PMID:23190075; http://dx.doi.org/10.1146/annurev-physiol-030212-183712
  • Hansen M, Flatt T, Aguilaniu H. Reproduction, Fat Metabolism, and Lifespan – What Is the Connection?. Cell Metab 2013; 17:10-9; PMID:23312280; http://dx.doi.org/10.1016/j.cmet.2012.12.003
  • Selman C, Lingard S, Choudhury AI, Batterham RL, Claret M, Clements M, Ramadani F, Okkenhaug K, Schuster E, Blanc E, et al. Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J 2008; 22:807-18; PMID:17928362; http://dx.doi.org/10.1096/fj.07-9261com
  • Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004; 429:771-6; PMID:15175761; http://dx.doi.org/10.1038/nature02583
  • Whitaker R, Faulkner S, Miyokawa R, Burhenn L, Henriksen M, Wood JG, Helfand SL. Increased expression of Drosophila Sir2 extends life span in a dose-dependent manner. Aging (Albany NY) 2013; 5:682-91; PMID:24036492
  • Proshkina EN, Shaposhnikov MV, Sadritdinova AF, Kudryavtseva AV, Moskalev AA. Basic mechanisms of longevity: A case study of Drosophila pro-longevity genes. Ageing Res Rev 2015; 24:218-31; PMID:26318059; http://dx.doi.org/10.1016/j.arr.2015.08.005
  • Friedman JR, Dibenedetto JR, West M, Rowland AA, Voeltz GK. Endoplasmic reticulum-endosome contact increases as endosomes traffic and mature. Mol Biol Cell 2013; 24:1030-40; PMID:23389631; http://dx.doi.org/10.1091/mbc.E12-10-0733
  • Hönscher C, Ungermann C. A close-up view of membrane contact sites between the endoplasmic reticulum and the endolysosomal system: from yeast to man. Crit Rev Biochem Mol Biol 2014; 49:262-8; PMID:24382115; http://dx.doi.org/10.3109/10409238.2013.875512
  • van der Kant R, Neefjes J. Small regulators, major consequences – Ca2+ and cholesterol at the endosome–ER interface. J Cell Sci 2014; 127:929-38; PMID:24554437; http://dx.doi.org/10.1242/jcs.137539
  • Rowland AA, Chitwood PJ, Phillips MJ, Voeltz GK. ER Contact Sites Define the Position and Timing of Endosome Fission. Cell 2014; 159:1027-41; PMID:25416943; http://dx.doi.org/10.1016/j.cell.2014.10.023
  • Raiborg C, Wenzel EM, Pedersen NM, Olsvik H, Schink KO, Schultz SW, Vietri M, Nisi V, Bucci C, Brech A, et al. Repeated ER–endosome contacts promote endosome translocation and neurite outgrowth. Nature 2015; 520:234-8; PMID:25855459; http://dx.doi.org/10.1038/nature14359
  • Hashimoto Y, Shirane M, Matsuzaki F, Saita S, Ohnishi T, Nakayama KI. Protrudin regulates endoplasmic reticulum morphology and function associated with the pathogenesis of hereditary spastic paraplegia. J Biol Chem 2014; 289:12946-61; PMID:24668814; http://dx.doi.org/10.1074/jbc.M113.528687
  • Eden ER, White IJ, Tsapara A, Futter CE, Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction. Nat Cell Biol 2010; 12:267-72; PMID:20118922
  • Liu H, Wu Y, Zhu S, Liang W, Wang Z, Wang Y, Liu H, Wu Y, Zhu S, Liang W, Wang Z, Wang Y. PTP1B promotes cell proliferation and metastasis through activating src and ERK1/2 in non-small cell lung cancer. Cancer Lett 2015; 359:218-25; PMID:25617799; http://dx.doi.org/10.1016/j.canlet.2015.01.020
  • Elchebly M, Payette P, Michaliszyn E, Cromlish W, Collins S, Loy AL, Normandin D, Cheng A, Himms-Hagen J, Chan CC, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999; 283:1544-8; PMID:10066179; http://dx.doi.org/10.1126/science.283.5407.1544
  • Alpy F, Stoeckel ME, Dierich A, Escola JM, Wendling C, Chenard MP, Vanier MT, Gruenberg J, Tomasetto C, Rio MC. The steroidogenic acute regulatory protein homolog MLN64, a late endosomal cholesterol-binding protein. J Biol Chem 2001; 276:4261-9; PMID:11053434; http://dx.doi.org/10.1074/jbc.M006279200
  • Alpy F, Wendling C, Rio MC, Tomasetto C, MENTHO, a MLN64 homologue devoid of the START domain J Biol Chem 2002; 277:50780-7; PMID:12393907; http://dx.doi.org/10.1074/jbc.M208290200
  • Alpy F, Rousseau A, Schwab Y, Legueux F, Stoll I, Wendling C, Spiegelhalter C, Kessler P, Mathelin C, Rio MC, et al. STARD3 or STARD3NL and VAP form a novel molecular tether between late endosomes and the ER. J Cell Sci 2013; 126:5500-12; PMID:24105263; http://dx.doi.org/10.1242/jcs.139295
  • Tichauer JE, Morales MG, Amigo L, Galdames L, Klein A, Quinones V, Ferrada C, Alvarez AR, Rio MC, Miquel JF, et al. Overexpression of the cholesterol-binding protein MLN64 induces liver damage in the mouse. World J Gastroenterol 2007; 13:3071-9; PMID:17589922
  • Vinatzer U, Dampier B, Streubel B., Pacher M, Seewald MJ, Stratowa C, Kaserer K, Schreiber M. Expression of HER2 and the coamplified genes GRB7 and MLN64 in human breast cancer: quantitative real-time reverse transcription-PCR as a diagnostic alternative to immunohistochemistry and fluorescence in situ hybridization. Clin Cancer Res 2005; 11:8348-57; PMID:16322295; http://dx.doi.org/10.1158/1078-0432.CCR-05-0841
  • Stigliano A, Gandini O, Cerquetti L, Gazzaniga P, Misiti S, Monti S, Gradilone A, Falasca P, Poggi M, Brunetti E, et al. Increased metastatic lymph node 64 and CYP17 expression are associated with high stage prostate cancer. J Endocrinol 2007; 194:55-61; PMID:17592021; http://dx.doi.org/10.1677/JOE-07-0131
  • Rivadeneira F, Styrkársdottir U, Estrada K, Halldórsson BV, Hsu YH, Richards JB, Zillikens MC, Kavvoura FK, Amin N, Aulchenko YS, et al. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies Nat Genet 2009; 41:1199-206; PMID:19801982; http://dx.doi.org/10.1038/ng.446
  • Toulmay A, Prinz WA. Lipid transfer and signaling at organelle contact sites: the tip of the iceberg. Curr Opin Cell Biol 2011; 23:458-63; PMID:21555211; http://dx.doi.org/10.1016/j.ceb.2011.04.006
  • Prinz WA. Bridging the gap: Membrane contact sites in signaling, metabolism, and organelle dynamics J Cell Biol 2014; 205:759-69; PMID:24958771; http://dx.doi.org/10.1083/jcb.201401126
  • Helle SCJ, Kanfer G, Kolar K, Lang A, Michel AH, Kornmann B. Organization and function of membrane contact sites. Biochimica Et Biophysica Acta (BBA) - Mol Cell Res 2013; 1833:2526-41; http://dx.doi.org/10.1016/j.bbamcr.2013.01.028
  • English AR, Voeltz GK. Endoplasmic Reticulum Structure and Interconnections with Other Organelles. Cold Spring Harb Perspect Biol 2013; 5:a013227; PMID:23545422; http://dx.doi.org/10.1101/cshperspect.a013227
  • Lev S. Nonvesicular Lipid Transfer from the Endoplasmic Reticulum. Cold Spring Harb Perspect Biol 2012; 4:a013300; PMID:23028121; http://dx.doi.org/10.1101/cshperspect.a013300
  • D'Angelo G, Vicinanza M, De Matteis MA, Lipid-transfer proteins in biosynthetic pathways. Curr Opin Cell Biol 2008; 20:360-70; http://dx.doi.org/10.1016/j.ceb.2008.03.013
  • Lev S. Non-vesicular lipid transport by lipid-transfer proteins and beyond. Nat Rev Mol Cell Biol 2010; 11:739-50; PMID:20823909; http://dx.doi.org/10.1038/nrm2971
  • Holthuis JCM, Levine TP. Lipid traffic: floppy drives and a superhighway. Nat Rev Mol Cell Biol 2005; 6:209-20; PMID:15738987; http://dx.doi.org/10.1038/nrm1591
  • Wirtz KWA, Schouten A, Gros P. Phosphatidylinositol transfer proteins: from closed for transport to open for exchange. Adv Enzyme Regul 2006; 46:301-11; PMID:16854452; http://dx.doi.org/10.1016/j.advenzreg.2006.01.020
  • Im YJ, Raychaudhuri S, Prinz WA, Hurley JH. Structural mechanism for sterol sensing and transport by OSBP-related proteins. Nature 2005; 437:154-8; PMID:16136145; http://dx.doi.org/10.1038/nature03923
  • Wirtz KW, Zilversmit DB. Exchange of phospholipids between liver mitochondria and microsomes in vitro. J Biol Chem 1968; 243:3596-602; PMID:4968799
  • Zilversmit DB. Lipid transfer proteins: overview and applications. Meth Enzymol 1983; 98:565-73; PMID:6669064; http://dx.doi.org/10.1016/0076-6879(83)98183-1
  • Levine TP. A lipid transfer protein that transfers lipid. J Cell Biol 2007; 179:11-3; PMID:17923527; http://dx.doi.org/10.1083/jcb.200709055
  • Kawano M, Kumagai K, Nishijima M, Hanada K. Efficient trafficking of ceramide from the endoplasmic reticulum to the Golgi apparatus requires a VAMP-associated protein-interacting FFAT motif of CERT. J Biol Chem 2006; 281:30279-88; PMID:16895911; http://dx.doi.org/10.1074/jbc.M605032200
  • Hanada K, Kumagai K, Tomishige N, Kawano M. CERT and intracellular trafficking of ceramide. Biochim Biophys Acta 2007; 1771:644-53; PMID:17314061; http://dx.doi.org/10.1016/j.bbalip.2007.01.009
  • Kumagai K, Yasuda S, Okemoto K, Nishijima M, Kobayashi S, Hanada K. CERT mediates intermembrane transfer of various molecular species of ceramides J Biol Chem 2005; 280:6488-95; PMID:15596449; http://dx.doi.org/10.1074/jbc.M409290200
  • Loewen CJR, Roy A, Levine TP. A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP. EMBO J 2003; 22:2025-35; PMID:12727870; http://dx.doi.org/10.1093/emboj/cdg201
  • Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, Fukasawa M, Nishijima M. Molecular machinery for non-vesicular trafficking of ceramide Nature 2003; 426:803-9; PMID:14685229; http://dx.doi.org/10.1038/nature02188
  • Kudo N, Kumagai K, Tomishige N, Yamaji T, Wakatsuki S, Nishijima M, Hanada K, Kato R. Structural basis for specific lipid recognition by CERT responsible for nonvesicular trafficking of ceramide. Proc Natl Acad Sci USA 2008; 105:488-93; PMID:18184806; http://dx.doi.org/10.1073/pnas.0709191105
  • Huitema K, van den Dikkenberg J, Brouwers J.F.HM, Holthuis JCM. Identification of a family of animal sphingomyelin synthases. EMBO J 2004; 23:33-44; PMID:14685263; http://dx.doi.org/10.1038/sj.emboj.7600034
  • Hanada K. Discovery of the molecular machinery CERT for endoplasmic reticulum-to-Golgi trafficking of ceramide. Mol Cell Biochem 2006; 286:23-31; PMID:16601923; http://dx.doi.org/10.1007/s11010-005-9044-z
  • Lev S, Halevy DB, Peretti D, Dahan N. The VAP protein family: from cellular functions to motor neuron disease. Trends Cell Biol 2008; 18:282-90; PMID:18468439; http://dx.doi.org/10.1016/j.tcb.2008.03.006
  • D'Angelo G, Polishchuk E, Di Tullio G, Santoro M, Di Campli A, Godi A, West G, Bielawski J, Chuang CC, van der Spoel AC, et al. Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 2007; 449:62-7; http://dx.doi.org/10.1038/nature06097
  • Malinina L, Malakhova ML, Teplov A, Brown RE, Patel DJ. Structural basis for glycosphingolipid transfer specificity, Nature 2004; 430:1048-53; PMID:15329726; http://dx.doi.org/10.1038/nature02856
  • Halter D, Neumann S, van Dijk SM, Wolthoorn J, de Mazière AM, Vieira OV, Mattjus P, Klumperman J, van Meer G, Sprong H. Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J Cell Biol 2007; 179:101-15; PMID:17923531; http://dx.doi.org/10.1083/jcb.200704091
  • Helmkamp GM. Phospholipid transfer proteins: mechanism of action J Bioenerg Biomembr 1986; 18:71-91; PMID:3522562; http://dx.doi.org/10.1007/BF00743477
  • Hardie RC, Raghu P, Moore S, Juusola M, Baines RA, Sweeney ST. Calcium influx via TRP channels is required to maintain PtdIns(4,5)P2 levels in Drosophila photoreceptors. Neuron 2001; 30:149-59; PMID:11343651; http://dx.doi.org/10.1016/S0896-6273(01)00269-0
  • Milligan SC, Alb JG, Elagina RB, Bankaitis VA, Hyde DR. The phosphatidylinositol transfer protein domain of Drosophila retinal degeneration B protein is essential for photoreceptor cell survival and recovery from light stimulation. J Cell Biol 1997; 139:351-63; PMID:9334340; http://dx.doi.org/10.1083/jcb.139.2.351
  • Tilley SJ, Skippen A, Murray-Rust J, Swigart PM, Stewart A, Morgan CP, Cockcroft S, McDonald NQ. Structure-Function Analysis of Phosphatidylinositol Transfer Protein Alpha Bound to Human Phosphatidylinositol. Structure 2004; 12:317-26; PMID:14962392; http://dx.doi.org/10.1016/j.str.2004.01.013
  • Vordtriede PB, Doan CN, Tremblay JM, George HM, Yoder MD. Structure of PITPβ in Complex with Phosphatidylcholine:  Comparison of Structure and Lipid Transfer to Other PITP Isoforms†,‡. Biochem 2005; 44:14760-71; http://dx.doi.org/10.1021/bi051191r
  • Sha B, Phillips SE, Bankaitis VA, Luo M. Crystal structure of the Saccharomyces cerevisiae phosphatidylinositol- transfer protein. Nature 1998; 391:506-10; PMID:9461221; http://dx.doi.org/10.1038/35179
  • Ryan MM, Temple BRS, Phillips SE, Bankaitis VA. Conformational Dynamics of the Major Yeast Phosphatidylinositol Transfer Protein Sec14p: Insight into the Mechanisms of Phospholipid Exchange and Diseases of Sec14p-Like Protein Deficiencies. Mol Biol Cell 2007; 18:1928-42; PMID:17344474; http://dx.doi.org/10.1091/mbc.E06-11-1024
  • Schaaf G, Ortlund EA, Tyeryar KR, Mousley CJ, Ile KE, Garrett TA, Ren J, Woolls MJ, Raetz CR, Redinbo MR, et al. Functional Anatomy of Phospholipid Binding and Regulation of Phosphoinositide Homeostasis by Proteins of the Sec14 Superfamily. Mol Cell 2008; 29:191-206; PMID:18243114; http://dx.doi.org/10.1016/j.molcel.2007.11.026
  • Raychaudhuri S, Im YJ, Hurley JH, Prinz W. A. Nonvesicular sterol movement from plasma membrane to ER requires oxysterol-binding protein-related proteins and phosphoinositides. J Cell Biol 2006; 173:107-19; PMID:16585271; http://dx.doi.org/10.1083/jcb.200510084
  • Teuling E, Ahmed S, Haasdijk E, Demmers J, Steinmetz MO, Akhmanova A, Jaarsma D, Hoogenraad CC. Motor neuron disease-associated mutant vesicle-associated membrane protein-associated protein (VAP) B recruits wild-type VAPs into endoplasmic reticulum-derived tubular aggregates. J Neurosci 2007; 27:9801-15; PMID:17804640; http://dx.doi.org/10.1523/JNEUROSCI.2661-07.2007