3,866
Views
33
CrossRef citations to date
0
Altmetric
Opinion Article

Understanding of anesthesia – Why consciousness is essential for life and not based on genes

, , &
Article: e1238118 | Received 10 Jul 2015, Accepted 14 Sep 2016, Published online: 04 Nov 2016

References

  • Rudolph U, Antkowiak B. Molecular and neuronal substrates for general anaesthetics. Nat Rev Neurosci 2004; 5:709-72; http://dx.doi.org/10.1038/nrn1496
  • Perouansky M. The quest for a unified model of anesthetic action. A century in Claude Bernard's shadow. Anesthesiology 2012; 117:465-74; http://dx.doi.org/10.1097/ALN.0b013e318264492e
  • Rinaldi A. Reawakening anaesthesia research. EMBO Rep 2014; 15:1113-8; http://dx.doi.org/10.15252/embr.201439593
  • Bancroft WD, Richter GH. Claude Bernard's theory of narcosis. Proc Natl Acad Sci USA 1930; 16:573-577; http://dx.doi.org/10.1073/pnas.16.9.573
  • Franks NP, Lieb WR. Do general anaesthetics act by competitive binding to specific receptors? Nature 1984; 310:599-601; http://dx.doi.org/10.1038/310599a0
  • Hameroff SR. The entwined mysteries of anesthesia and consciousness: is there a common underlying mechanism? Anesthesiology 2006; 105:400-12; http://dx.doi.org/10.1097/00000542-200608000-00024
  • Hameroff SR, Craddock TJ, Tuszynski JA. Quantum effects in the understanding of consciousness. J Integr Neurosci 2014; 13:229-52; http://dx.doi.org/10.1142/S0219635214400093
  • Sonner JM. A hypothesis on the origin and evolution of the response to inhaled anesthetics. Anesth Analg 2008; 107:849-854; http://dx.doi.org/10.1213/ane.0b013e31817ee684
  • Sonner JM, Cantor RS. Molecular mechanisms of drug action: an emerging view. Ann Rev Biophys 2013; 42:143-67; http://dx.doi.org/10.1146/annurev-biophys-083012-130341
  • Turin L, Skoulakis EMC, Horsfield AP. Electron spin changes during general anesthesia in Drosophila. Proc Natl Acad Sci USA 2014; 111:E3524-33; http://dx.doi.org/10.1073/pnas.1404387111
  • Bernard C. Lectures on the Phenomena of Life Common to Animals and Plants. Charles C Thomas Pub Ltd (June 1974); 1878.
  • Grémiaux A, Yokawa K, Mancuso S, Baluška F. Plant anesthesia supports similarities between animals and plants: Claude Bernard's forgotten studies. Plant Signal Behav 2014; 9:e27886; http://dx.doi.org/10.4161/psb.27886
  • Lloyd FE. Some effects of narcotics on Spirogyra. Anesth Analg 1924; 3:9-19; http://dx.doi.org/10.1213/00000539-192402000-00003
  • White DC, Dundas CR. Effect of anaesthetics on emission of light by luminous bacteria. Nature 1970; 226:456-8; http://dx.doi.org/10.1038/226456a0
  • De Luccia TP. Mimosa pudica, Dionaea muscipula and anesthetics. Plant Signal Behav 2012; 7:1163-7; http://dx.doi.org/10.4161/psb.21000
  • Hall GM, Kirtland SJ, Baum H. The inhibition of mitochondrial respiration by inhalational anaesthetic agents. Br J Anaesth 1973; 45:1005-9; http://dx.doi.org/10.1093/bja/45.10.1005
  • Cohen PJ. Effect of anesthetics on mitochondrial function. Anesthesiology 1973; 39:153-64; http://dx.doi.org/10.1097/00000542-197308000-00007
  • Brunner EA, Cheng SC, Berman ML. Effects of anesthesia on intermediary metabolism. Annu Rev Med 1975; 26:391-401; http://dx.doi.org/10.1146/annurev.me.26.020175.002135
  • Nahrwold ML, Cohen PJ. Anesthetics and mitochondrial respiration. Clin Anesth 1975; 11:25-44
  • Nakao H, Ogli K, Yokono S, Ono J, Miyatake A. The effect of volatile anesthetics on light-induced phosphorylation in spinach chloroplasts. Toxicol Lett 1998; 100-101:135-8; http://dx.doi.org/10.1016/S0378-4274(98)00177-5
  • La Monaca E, Fodale V. Effects of anesthetics on mitochondrial signaling and function. Curr Drug Saf 2012; 7:126-39; http://dx.doi.org/10.2174/157488612802715681
  • Ingram LO. Adaptation of membrane lipids to alcohols. J Bacteriol 1976; 125:670-8
  • Johnson SM, Saint John BE, Dine AP. Local anesthetics as antimicrobial agents: a review. Surg Infect (Larchmt) 2008; 9:205-13; http://dx.doi.org/10.1089/sur.2007.036
  • Weng Y, Yang L, Corringer PJ, Sonner JM. Anesthetic sensitivity of theGloeobacter violaceus proton-gated ion channel. Anesth Analg 2010; 110:59-63; http://dx.doi.org/10.1213/ANE.0b013e3181c4bc69
  • Bernard C. Leçons sur les anesthésiques et sur l'asphyxie. Librairie J-B Baillière et Fils. 1875
  • Ewart AJ. On the Physics and Physiology of Protoplasmic Streaming in Plants. Oxford; 1903.
  • Osterhout WJV. Some aspects of protoplasmic motion. J Gen Physiol 1951; 35:519-27; http://dx.doi.org/10.1085/jgp.35.3.519
  • Garcia-Sierra F, Frixione E. Lidocaine, a local anesthetic, reversibly inhibits cytoplasmic streaming in Vallisneria mesophyll cells. Protoplasma 1993; 175:153-60; http://dx.doi.org/10.1007/BF01385014
  • Kiefer RT, Ploppa A, Krueger WA, Plank M, Nohé B, Haeberle HA, Unertl K, Dieterich HJ. Local anesthetics impair human granulocyte phagocytosis activity, oxidative burst, and CD11b expression in response toStaphylococcus aureus. Anesthesiology 2003; 98:842-8; http://dx.doi.org/10.1097/00000542-200304000-00009
  • Hameroff S. Why anesthetic mechanism research has failed, and what to do about it. http://anesth.medicine.arizona.edu/system/files/pdfs, Downloaded June 2015
  • Sonner JM. Issues in the design and interpretation of minimum alveolar anesthetic concentration (MAC) studies. Anesth Analg 2002; 95:609-14
  • Brosnan RJ, Yang L, Milutinovic PS, Zhao J, Laster MJ, Eger EI, 2nd, Sonner JM. Ammonia has anesthetic properties. Anesth Analg 2007; 104:430-3; http://dx.doi.org/10.1213/01.ane.0000264072.97705.0f
  • Yang L, Zhao J, Milutinovic PS, Brosnan RJ, Eger EI, 2nd, Sonner JM. Anesthetic properties of the ketone bodies β-hydroxybutyric acid and acetone. Anesth Analg 2007; 105:673-9; http://dx.doi.org/10.1213/01.ane.0000278127.68312.dc
  • Weng Y, Hsu TT, Zhao J, Nishimura S, Fuller GG, Sonner JM. Isovaleric, methylmalonic, and propionic acid decrease anesthetic EC50 in tadpoles, modulate glycine receptor function, and, interact with the lipid 1,2-dipalmitoyl-Sn-glycero-3-phosphocholine. Anesth Analg 2009; 108:1538-45; PMID:19372333; http://dx.doi.org/10.1213/ane.0b013e31819cd964
  • Eger EI, 2nd, Raines DE, Shafer SL, Hemmings HC, Jr, Sonner JM. Is a new paradigm neededto explain how inhaled anesthetics produce immobility? Anesth Analg 2008; 107:832-48; http://dx.doi.org/10.1213/ane.0b013e318182aedb
  • Tanaka K, Ludwig LM, Kersten JR, Pagel PS, Warltier DC. Mechanisms of cardioprotection, by volatile anesthetics. Anesthesiology 2004;100:707-21; PMID:15108989; http://dx.doi.org/10.1097/00000542-200403000-00035
  • De Hert SG, Turani F, Mathur S, Stowe DF. Cardioprotection with volatile anesthetics: mechanisms and clinical implications. Anesth Analg 2005; 100:1584-93; PMID:15920178; http://dx.doi.org/10.1213/01.ANE.0000153483.61170.0C
  • Agarwal B, Stowe DF, Dash RK, Bosnjak ZJ, Camara AK. Mitochondrial targets for volatile anesthetics against cardiac ischemia-reperfusion injury. Front Physiol 2014; 5:341; PMID:25278902; http://dx.doi.org/10.3389/fphys.2014.00341
  • Keller C, Grimm C, Wenzel A, Hafezi F, Remé C. Protective effect of halothane anesthesiaon retinal light damage: inhibition of metabolic rhodopsin regeneration. Invest Ophthalmol Vis Sci 2001; 42:476-80
  • Stevenson GW, Hall S, Rudnick SJ, Alvord G, Rossio J, Urban W, Leventhal JB, Miller P, Seleny F, Stevenson HC. Halothane anesthesia decreases human monocyte hydrogen peroxide generation. Protection of monocytes by activation with gamma interferon. Immunopharmacol Immunotoxicol 1987; 9:489-510; PMID:3125239; http://dx.doi.org/10.3109/08923978709035228
  • Barodka VM, Acheampong E, Powell G, Lobach L, Logan DA, Parveen Z, Armstead V, Mukhtar M. Antimicrobial effects of liquid anesthetic isoflurane on Candida albicans. J Transl Med 2006; 4:46; PMID:17094810; http://dx.doi.org/10.1186/1479-5876-4-46
  • Manley SL. Phytogenesis of halomethanes: a production of selection or a metabolic accident? Biogeochemistry 2002; 60:163-80; http://dx.doi.org/10.1023/A:1019859922489
  • Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN. Biogenic volatile organic compounds in the Earth system. New Phytol 2009; 183:27-51; PMID:19422541; http://dx.doi.org/10.1111/j.1469-8137.2009.02859.x
  • Redeker KR, Wang N, Low JC, McMillan A, Tyler SC, Cicerone RJ. Emissions of methyl halides and methane from rice paddies. Science 2000; 290:966-9; PMID:11062125; http://dx.doi.org/10.1126/science.290.5493.966
  • Holopainen JK, Gershenzon J. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci 2010; 15:176-84; PMID:20144557; http://dx.doi.org/10.1016/j.tplants.2010.01.006
  • Loreto F, Schnitzler JP. 2010. Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154-66; PMID:20133178; http://dx.doi.org/10.1016/j.tplants.2009.12.006
  • Peñuelas J, Staudt M. BVOCs and global change. Trends Plant Sci 2010; 15:133-144; http://dx.doi.org/10.1016/j.tplants.2009.12.005
  • Kegge W, Pierik R. Biogenic volatile organic compounds and plant competition. Trends Plant Sci 2010; 15:126-32; PMID:20036599; http://dx.doi.org/10.1016/j.tplants.2009.11.007
  • Fang Z, Ionescu P, Chortkoff BS, Kandel L, Sonner J, Laster MJ, Eger EI, 2nd. Anestheticpotencies of n-alkanols: results of additivity and solubility studies suggest a mechanism of action similar to that for conventional inhaled anesthetics. Anesth Analg 1997; 84:1042-8; PMID:9141929; http://dx.doi.org/10.1213/00000539-199705000-00017
  • Hau KM, Connell DW, Richardson BJ. A study of the biological partitioning behavior of n-alkanes and n-alkanols in causing anesthetic effects. Regul Toxicol Pharmacol 2002; 35:273-9; http://dx.doi.org/10.1006/rtph.2001.1531
  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos Trans R Soc Lond B Biol Sci 2013; 368:20130122; PMID:23713120; http://dx.doi.org/10.1098/rstb.2013.0122
  • Könneke M, Schubert DM, Brown PC, Hügler M, Standfest S, Schwander T, Schada von Borzyskowski L, Erb TJ, Stahl DA, Berg IA. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc Natl Acad Sci USA 2014; 111:8239-44; PMID:24843170; http://dx.doi.org/10.1073/pnas.1402028111
  • Hu HW, Chen D, He JZ. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiol Rev 2015; 39:729-49
  • Howe GA, Schilmiller AL. Oxylipin metabolism in response to stress. Curr Opin Plant Biol 2002, 5:230-6; PMID:11960741; http://dx.doi.org/10.1016/S1369-5266(02)00250-9
  • Chechetkin IR, Mukhitova FK, Blufard AS, Yarin AY, Antsygina LL, Grechkin AN. Unprecedented pathogen-inducible complex oxylipins from flax linolipins A and B. FEBS J 2009; 276:4463-72; PMID:19645727; http://dx.doi.org/10.1111/j.1742-4658.2009.07153.x
  • Wang F, Cui X, Sun Y, Dong CH. Ethylene signaling and regulation in plant growth and stress responses. Plant Cell Rep 2013; 32:1099-109; PMID:23525746; http://dx.doi.org/10.1007/s00299-013-1421-6
  • Kazan K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci 2015; 20:219-29; PMID:25731753; http://dx.doi.org/10.1016/j.tplants.2015.02.001
  • Calixto JB, Beirith A, Ferreira J, Santos AR, Filho VC, Yunes RA. Naturally occurring antinociceptive substances from plants. Phytother Res 2000; 14:401-18; PMID:10960893; http://dx.doi.org/10.1002/1099-1573(200009)14:6%3c401::AID-PTR762%3e3.0.CO;2-H
  • Askitopoulou H, Ramoutsa IA, Konsolaki E. Analgesia and anesthesia: etymology and literary history of related greek words. Anesth Analg 2000; 91:486-91; PMID:10910873
  • Kennedy DO, Wightman EL. Herbal extracts and phytochemicals: plant secondary metabolites and the enhancement of human brain function. Adv Nutr 2011; 2:32-50; PMID:22211188; http://dx.doi.org/10.3945/an.110.000117
  • Kennedy DO. Plants and the Human Brain. Oxford University Press, 2014
  • Meotti FC, Lemos de Andrade E, Calixto JB. TRP modulation by natural compounds. Handb Exp Pharmacol 2014; 223:1177-238; PMID:24961985; http://dx.doi.org/10.1007/978-3-319-05161-1_19
  • Dolferus R, Jacobs M, Peacock WJ, Dennis ES. Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene. Plant Physiol 1994; 105:1075-87; PMID:7972489; http://dx.doi.org/10.1104/pp.105.4.1075
  • Strommer J. The plant ADH gene family. Plant J 2011; 66:128-42; PMID:21443628; http://dx.doi.org/10.1111/j.1365-313X.2010.04458.x
  • Taylorson RB, Hendricks SB. Overcoming dormancy, in seeds with ethanol and other anesthetics. Planta 1979; 145:507-10; PMID:24317868
  • Dillard MM. Ethylene – the new general anesthetic. J Natl Med Assoc 1930; 22:10-11; PMID:20892343
  • Campagna JA, Miller KW, Forman SA. Mechanisms of actions of inhaled anesthetics. New Engl J Med 2003; 348:2110-24; PMID:12761368; http://dx.doi.org/10.1056/NEJMra021261
  • Kopp Lugli A, Yost CS, Kindler CH. Anaesthetic mechanisms: update on the challenge of unravelling the mystery of anaesthesia. Eur J Anaesthesiol 2009; 26:807-20; PMID:19494779; http://dx.doi.org/10.1097/EJA.0b013e32832d6b0f
  • Freebairn HT, Buddendenhagen IW. Ethylene production by Pseudomonas solanacearum. Nature 1964; 202:313-4; PMID:14167811; http://dx.doi.org/10.1038/202313a0
  • Smith AM. Ethylene as a cause of soil fungistasis. Nature 1973; 246:311-3; PMID:4586317; http://dx.doi.org/10.1038/246311a0
  • Lynch JM, Harper SHT. Formation of ethylene by a soil fungus. J Gen Microbiol 1974; 80:187-95; http://dx.doi.org/10.1099/00221287-80-1-187
  • Smith AM, James Cook R. Implications of ethylene production by bacteria for biological balance of soil. Nature 1974; 252:703-5; PMID:4437621; http://dx.doi.org/10.1038/252703b0
  • Primrose SB, Dilworth MJ. Ethylene production by bacteria. J Gen Microbiol 1976; 93:177-81; PMID:772166; http://dx.doi.org/10.1099/00221287-93-1-177
  • Considine PJ, Flynn N, Patching JW. Ethylene production by soil microorganisms. Appl Environ Microbiol 1977; 33:977-9; PMID:869541
  • Graham JH, Linderman RG. Ethylene production by ectomycorrhizal fungi, Fusarium oxysporum f. sp. pini, and by aseptically synthesized ectomycorrhizae and Fusarium-infected Douglas-fir roots. Can J Microbiol 1980; 26:1340-7; PMID:7214223; http://dx.doi.org/10.1139/m80-222
  • Huang TC, Chow TJ. Ethylene production by blue-green algae. Bot Bull Acad Sinica 1984; 25:81-6
  • Kauppi N, Kauppi A, Garty J. Ethylene produced by the lichen Cladina stellaris exposed to sulphur and heavy metal-containing solutions under acidic conditions. New Phytol 1998; 139:537-47; http://dx.doi.org/10.1046/j.1469-8137.1998.00214.x
  • Chagué V, Elad Y, Barakat R, Tudzynski P, Sharon A. Ethylene biosynthesis inBotrytis cinerea. FEMS Microbiol Ecol 2002; 40:143-9; http://dx.doi.org/10.1111/j.1574-6941.2002.tb00946.x
  • Plettner I, Steinke M, Malin G. Ethene (ethylene) production in the marine macroalga Ulva (Enteromorpha) intestinalis L. (Chlorophyta, Ulvophyceae): effect of light-stress and co-production with dimethyl sulphide. Plant Cell Environm 2005; 28:1136-45; http://dx.doi.org/10.1111/j.1365-3040.2005.01351.x
  • Quadir A, Hewett EW, Long PG, Dilley DR. A non-ACC pathway for ethylene biosynthesis in Botrytis cinerea. Postharv Biol Technol 2011; 62:314-8; http://dx.doi.org/10.1016/j.postharvbio.2011.06.003
  • Whalen FX, Bacon DR, Smith HM. Inhaled anesthetics: an historical overview. Best Pract Res Clin Anaesthesiol 2005; 19:323-30; PMID:16013684; http://dx.doi.org/10.1016/j.bpa.2005.02.001
  • Mazurek MJ. Dr. Chauncey Leake and the development of divinyl oxide from bench to bedside. CSA Bull 2007; 86-9
  • Finer B. Divinyl ether. Brit J Anaesth 1965; 37:661-6; PMID:5320087; http://dx.doi.org/10.1093/bja/37.9.661
  • Itoh A, Howe GA. Molecular cloning of a divinyl ether synthase. J Biol Chem 2001; 276:3620-27; PMID:11060314; http://dx.doi.org/10.1074/jbc.M008964200
  • Stumpe M, Carsjens JG, Göbel C, Feussner I. Divinyl ether synthesis in garlic bulbs. J Exp Bot 2008; 59:907-15; PMID:18326559; http://dx.doi.org/10.1093/jxb/ern010
  • Fammartino A, Verdaguer B, Fournier J, Tamietti G, Carbonne F, Esquerré-Tugayé MT, Cardinale F. Coordinated transcriptional regulation of the divinyl ether biosynthetic genes in tobacco by signal molecules related to defense. Plant Physiol Biochem 2010; 48:225-31; PMID:20137961; http://dx.doi.org/10.1016/j.plaphy.2010.01.012
  • Fammartino A, Cardinale F, Göbel C, Mène-, Saffrané L, Fournier J, Feussner I, Esquerré-Tugayé MT. Characterization of a divinyl ether biosynthetic pathway specifically associated with pathogenesis in tobacco. Plant Physiol 2007; 143:378-88; PMID:17085514; http://dx.doi.org/10.1104/pp.106.087304
  • Dasta J. Local anesthetics: evolving to a new standard of care. Pharm Pract New Spec Rep 2013; January:1-8.
  • Golembiewski J, Dasta J. Evolving role of local anesthetics in managing postsurgical analgesia. Clin Therap 2015; 37:1354-1371; http://dx.doi.org/10.1016/j.clinthera.2015.03.017
  • Behçet Al. The source-synthesis: history and use of atropine. J Acad Emerg Med 2014; 13:2-3; http://dx.doi.org/10.5152/jaem.2014.1120141
  • Façanha MF, Gomes LC. Efficacy of menthol as an anesthetic for tambaqui (Colossoma macropomum, Characiformes: Characidae). Acta Amazon 2005; 35:71-5; http://dx.doi.org/10.1590/S0044-59672005000100011
  • Watt EE, Betts BA, Kotey FO, Humbert DJ, Griffith TN, Kelly EW, Veneskey KC, Gill N, Rowan KC, Jenkins A, Hall AC. Menthol shares general anesthetic activity and sites of action on the GABA(A) receptor with the intravenous agent, propofol. Eur J Pharmacol 2008; 590:120-6; PMID:18593637; http://dx.doi.org/10.1016/j.ejphar.2008.06.003
  • Ghelardini C, Galeotti N, Mazzanti G. Local anaesthetic activity of monoterpenes and phenylpropanes of essential oils. Planta Med 2001; 67:564-6; PMID:11509984; http://dx.doi.org/10.1055/s-2001-16475
  • de Lima Silva L, Thomas da Silva D, Garlet QI, Cunha MA, Mallmann CA, Baldisserotto B, Longhi SJ, Soares Pereira AM, Heinzmann BA. Anesthetic activity of Brazilian native plants in silver catfish (Rhamdia quelen). Neotrop Ichthyol 2013; 11:443-51; http://dx.doi.org/10.1590/S1679-62252013000200014
  • Burton RR. G-induced loss of consciousness: definition, history, current status. Aviat Space Environ Med 1988; 59:2-5; PMID:3281645
  • Johanson DC, Pheeny HT. A new look at the loss of consciousness experience within the US. Naval forces. Aviat Space Environ Med 1988; 59:6-8; PMID:3355469
  • Diehl RR. Vasovagal syncope and Darwinian fitness. Clin Auton Res 2005; 15:126-129; PMID:15834770; http://dx.doi.org/10.1007/s10286-005-0244-0
  • Alboni P, Alboni M. Vasovagal syncope as a manifestation of an evolutionary selected trait. J Atrial Fibril 2014; 7:97-102
  • Rose da Silva MFL. Syncope: epidemiology, etiology, and prognosis. Front Physiol 2014; 5:4; PMID:24478717
  • Palmer LK, Rannels SL, Kimball SR, Jefferson LS, Keil RL. Inhibition of mammalian translation initiation by volatile anesthetics. Am J Physiol Endocrinol Metab 2006; 290:E1267-75; PMID:16434554; http://dx.doi.org/10.1152/ajpendo.00463.2005
  • Uesono Y. Environmental stresses and clinical drugs paralyze a cell. Commun Integr Biol 2009; 2:275-8; PMID:19641750; http://dx.doi.org/10.4161/cib.2.3.8226
  • Uesono Y, Toh EA, Kikuchi Y, Terashima I. Structural analysis of compounds with actions similar to local anesthetics and antipsychotic phenothiazines in yeast. Yeast 2011; 28:391-404; PMID:21374719; http://dx.doi.org/10.1002/yea.1846
  • Safford WE. An Aztec narcotic. J Hered 1915; 6:291-311
  • Osmond H. Ololiuqui: The ancient Aztec narcotic. J Men Dis 1955; 101:526-37
  • Spiller HA, Hale JR, De Boer JZ. The Delphic Oracle: A multidisciplinary defense of the gaseous vent theory. Clin Toxicol 2002; 40:189-96
  • Icaza EE, Mashour GA. Altered states. Psychedelics and anesthetics. Anesthesiology 2013; 119:1255-60; PMID:24061599; http://dx.doi.org/10.1097/01.anes.0000435635.42332.ee
  • Dudley R. Ethanol, fruit ripening, and the historical origins of human alcoholism in primate frugivory. Integr Comp Biol 2004; 44:315-23; PMID:21676715; http://dx.doi.org/10.1093/icb/44.4.315
  • McGovern PE, Mirzoian A, Hall GR. Ancient Egyptian herbal wines. Proc Natl Acad Sci USA 2013; 106:7361-6; http://dx.doi.org/10.1073/pnas.0811578106
  • Carrigan MA, Uryasev O, Frye CB, Eckman BL, Myers CR, Hurley TD, Benner SA. Hominids adapted to metabolize ethanol long before human-directed fermentation. Proc Natl Acad Sci USA 2015; 112:458-63; PMID:25453080; http://dx.doi.org/10.1073/pnas.1404167111
  • Hockings KJ, Bryson-Morrison N, Carvalho S, Fujisawa M, Humle T, McGrew WC, Nakamura M, Ohashi G, Yamanashi Y, Yamakoshi G, et al. Tools to tipple: ethanol ingestion by wild chimpanzees using leaf-sponges. R Soc Open Sci 2015; 2:150150; PMID:26543588; http://dx.doi.org/10.1098/rsos.150150
  • Wiens F, Zitzmann A, Lachance MA, Yegles M, Pragst F, Wurst FM, von Holst D, Guan SL, Spanagel R. Chronic intake of fermented floral nectar by wild treeshrews. Proc Natl Acad Sci USA 2008; 105:10426-31; PMID:18663222; http://dx.doi.org/10.1073/pnas.0801628105
  • Devineni AV, Heberlein U. Addiction-like behavior in Drosophila. Commun Integr Biol 2010; 3:357-9; PMID:20798826; http://dx.doi.org/10.4161/cib.3.4.11885
  • Shohat-Ophir G, Kaun KR, Azanchi R, Mohammed H, Heberlein U. Sexual deprivation increases ethanol intake in Drosophila. Science 2012; 335:1351-5; PMID:22422983; http://dx.doi.org/10.1126/science.1215932
  • Peru Y, Colón de Portugal RL, Ojelade SA, Penninti PS, Dove RJ, Nye MJ, Acevedo SF, Lopez A, Rodan AR, Rothenfluh A. Long-lasting, experience-dependent alcohol preference in Drosophila. Addict Biol 2014; 19:392-401; PMID:24164972; http://dx.doi.org/10.1111/adb.12105
  • Lydic R, Baghdoyan HA. Sleep, anesthesiology, and the neurobiology of arousal state control. Anesthesiology 2005; 103:1268-95; PMID:16306742; http://dx.doi.org/10.1097/00000542-200512000-00024
  • Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science 2008; 322:876-80; PMID:18988836; http://dx.doi.org/; http://dx.doi.org/10.1126/science.1149213
  • Hutt A. Sleep and anesthesia. Front Neurosci 2009; 3:408-9
  • Franks NP. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci 2008; 9:370-86; PMID:18425091; http://dx.doi.org/10.1038/nrn2372
  • Franks NP, Zecharia AY. Sleep and general anesthesia. Can J Anaesth 2011; 58:139-48; PMID:21170623; http://dx.doi.org/10.1007/s12630-010-9420-3
  • McDermott CM, LaHoste GJ, Chen C, Musto A, Bazan NG, Magee JC. Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J Neurosci 2003; 23:9687-95; PMID:14573548
  • Walker MP. The role of sleep in cognition and emotion. Ann NY Acad Sci 2009; 1156:168-97; PMID:19338508; http://dx.doi.org/10.1111/j.1749-6632.2009.04416.x
  • Rasch B, Born J. About sleep's role in memory. Physiol Rev 2013; 93:681-766; PMID:23589831; http://dx.doi.org/10.1152/physrev.00032.2012
  • Hobson JA. REM sleep and dreaming: towards a theory of protoconsciousness. Nat Rev Neurosci 2009; 10:803-13; PMID:19794431
  • Choi S, Yu E, Lee S, Llinás RR. Altered thalamocortical rhythmicity and connectivity in mice lacking CaV3.1 T-type Ca2+ channels in unconsciousness. Proc Natl Acad Sci USA 2015; pii: 201420983
  • Kottler B, Bao H, Zalucki O, Imlach W, Troup M, van Alphen B, Paulk A, Zhang B, van Swinderen B. A sleep/wake circuit controls isoflurane sensitivity in Drosophila. Curr Biol 2013; 23:594-8; PMID:23499534; http://dx.doi.org/; http://dx.doi.org/10.1016/j.cub.2013.02.021
  • Price DD. Psychological and neural mechanisms of the affective dimension of pain. Science 2000; 288:1769-72; PMID:10846154; http://dx.doi.org/10.1126/science.288.5472.1769
  • Wager TD, Atlas LY. How Is Pain influenced by cognition? Neuroimaging weighs in. Persp Psych Sci 2013; 8:91-7; http://dx.doi.org/10.1177/1745691612469631
  • Zeidan F, Martucci KT, Kraft RA, McHaffie JG, Coghill RC. Neural correlates of mindfulness meditation-related anxiety relief. Soc Cogn Affect Neurosci 2014; 9:751-9; PMID:23615765; http://dx.doi.org/10.1093/scan/nst041
  • Jensen KB, Kaptchuk TJ, Kirsch I, Raicek J, Lindstrom KM, Berna C, Gollub RL, Ingvar M, Kong J. Nonconscious activation of placebo and nocebo pain responses. Proc Natl Acad Sci USA 2012; 109:15959-64; PMID:23019380; http://dx.doi.org/10.1073/pnas.1202056109
  • Jensen K, Kirsch I, Odmalm S, Kaptchuk TJ, Ingvar M. Classical conditioning of analgesic and hyperalgesic pain responses without conscious awareness. Proc Natl Acad Sci USA 2015; 112:7863-7; http://dx.doi.org/10.1073/pnas.1504567112
  • Price DD. Unconscious and conscious mediation of analgesia and hyperalgesia. Proc Natl Acad Sci USA 2015; 112:7624-5; PMID:26056258; http://dx.doi.org/10.1073/pnas.1508765112
  • Brown EN, Lydic R, Schiff ND. General anesthesia, sleep, and coma. N Engl J Med 2010; 363:2638-50; PMID:21190458; http://dx.doi.org/10.1056/NEJMra0808281
  • O'Neill JS, Reddy AB. Circadian clocks in human red blood cells. Nature 2011; 469:498-503; PMID:21270888; http://dx.doi.org/10.1038/nature09702
  • Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, Iwasaki H, Oyama T, Kondo T. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 2005; 308:414-15; PMID:15831759; http://dx.doi.org/10.1126/science.1108451
  • Eger EI, Saidman LJ, Brandstater B. Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology 1965; 26:756-63; PMID:5844267; http://dx.doi.org/10.1097/00000542-196511000-00010
  • Cook ND. The neuron-level phenomena underlying cognition and consciousness: synaptic activity and the action potential. Neuroscience 2008; 153:556-70; PMID:18406536; http://dx.doi.org/10.1016/j.neuroscience.2008.02.042
  • Cook ND, Carvalho GB, Damasio A. From membrane excitability to metazoan psychology. Trends Neurosci 2014; 37:698-705; PMID:25176475; http://dx.doi.org/10.1016/j.tins.2014.07.011
  • Llinás RR. Intrinsic electrical properties of mammalian neurons and CNS function: a historical perspective. Front Cell Neurosci 2014; 8:320
  • Baluška F, Wan YL. Physical control over endocytosis. In: Endocytosis in Plants. Šamaj J. (ed), Springer Verlag; 2012.
  • Wayne R. Excitability in plant cells. Am Sci 1993; 81:140-51.
  • Wayne R. The excitability of plant cells: With a special emphasis on Characean internodal cells. Bot Rev 1994; 60:265-7; PMID:11539934; http://dx.doi.org/10.1007/BF02960261
  • Beilby MJ. Action potential in Charophytes. Int Rev Cytol 2007; 257:43-83; PMID:17280895; http://dx.doi.org/10.1016/S0074-7696(07)57002-6
  • Masi E, Ciszak M, Stefano G, Renna L, Azzarello E, Pandolfi C, Mugnai S, Baluška F, Arecchi FT, Mancuso S. Spatio-temporal dynamics of the electrical network activity in the root apex. Proc Natl Acad Sci USA 2009; 106:4048-53; PMID:19234119; http://dx.doi.org/10.1073/pnas.0804640106
  • Hedrich R. Ion channels in plants. Physiol Rev 2012; 92:1777-811; PMID:23073631; http://dx.doi.org/10.1152/physrev.00038.2011
  • Król E, Dziubinska H, Trębacz K. What do plants need action potentials for? In:Action Potential: Biophysical and Cellular Context, Initiation, Phases and Propagation. DuBois ML. (ed), 2010; 1-26
  • Volkov A. Plant Electrophysiology: Signaling and Responses. Springer Verlag; 2012.
  • Baluška F, Mancuso S. Root apex transition zone as oscillatory zone. Front Plant Sci 2013; 4:354
  • Goldsworthy A. The evolution of plant action potentials. J Theor Biol 1983; 103:645-8; http://dx.doi.org/10.1016/0022-5193(83)90287-4
  • Steinhardt RA, Bi G, Alderton JM. Cell membrane resealing by a vesicular, mechanism similar to neurotransmitter release. Science 1994; 263:390-3; PMID:7904084; http://dx.doi.org/10.1126/science.7904084
  • Andrews NW, Chakrabarti S. There's more to life than neurotransmission: the regulation of exocytosis by synaptotagmin VII. Trends Cell Biol 2005; 15:626-31; PMID:16168654; http://dx.doi.org/10.1016/j.tcb.2005.09.001
  • Fu D, Vissavajjhala P, Hemmings HC Jr. Volatile anaesthetic effects on phospholipid binding to synaptotagmin 1, a presynaptic Ca2+ sensor. Br J Anaesth 2005; 95:216-21; PMID:15923266; http://dx.doi.org/10.1093/bja/aei163
  • Schapire AL, Valpuesta V, Botella MA. Plasma membrane repair in plants. Trends Plant Sci 2009; 14:645-52; PMID:19819752; http://dx.doi.org/10.1016/j.tplants.2009.09.004
  • Schapire AL, Voigt B, Jasik J, Rosado A, Lopez-Cobollo R, Menzel D, Salinas J, Mancuso S, Valpuesta V, Baluška F, Botella MA. Arabidopsis synaptotagmin 1 is required for themaintenance of plasma membrane integrity and cell viability. Plant Cell 2009; 20:3374-88; http://dx.doi.org/10.1105/tpc.108.063859
  • Morrow IC, Parton RG. Flotillins and the PHB domain protein family: rafts, worms and anaesthetics. Traffic 2005; 6:725-40; PMID:16101677; http://dx.doi.org/10.1111/j.1600-0854.2005.00318.x
  • Pristerá A, Okuse K. Building excitable membranes: lipid rafts and multiple controls on trafficking of electrogenic molecules. Neuroscientist 2012; 18:70-81; http://dx.doi.org/10.1177/1073858410393977
  • Zhao X, Li R, Lu C, Baluška F, Wan Y. Di-4-ANEPPDHQ, a fluorescent probe for the visualisation of membrane microdomains in living Arabidopsis thaliana cells. Plant Physiol Biochem 2015; 87:53-60; PMID:25549979; http://dx.doi.org/10.1016/j.plaphy.2014.12.015
  • Baluška F, Mancuso S. Synaptic view of eukaryotic cell. Int J Gen Syst 2014; 43:740-56; http://dx.doi.org/10.1080/03081079.2014.920999
  • Peltier JB, Ytterberg AJ, Sun Q, van Wijk KJ. New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy. J Biol Chem 2004; 279:49367-83; PMID:15322131; http://dx.doi.org/10.1074/jbc.M406763200
  • Toulmay A, Prinz WA. A conserved membrane-binding domain targets proteins to organelle contact sites. J Cell Sci 2012; 125:49-58; PMID:22250200; http://dx.doi.org/10.1242/jcs.085118
  • Pérez-Lara A, Jahn R. Extended synaptotagmins (E-Syts): architecture and dynamics of membrane contact sites revealed. Proc Natl Acad Sci USA 2015; 112:4837-8; http://dx.doi.org/; http://dx.doi.org/10.1073/pnas.1504487112
  • Pérez-Sancho J, Vanneste S, Lee E, McFarlane HE, Esteban Del Valle A, Valpuesta V, Friml J, Botella MA, Rosado A. The Arabidopsis Synaptotagmin1 is enriched in endoplasmic reticulum-plasma membrane contact sites and confers cellular resistance to mechanical stresses. Plant Physiol 2015; 168:132-43; http://dx.doi.org/10.1104/pp.15.00260
  • Mustardy L, Garab G. Granum revisited. A three-dimensional model – where things fall into place. Trends Plant Sci 2003; 8: 117-22; PMID:12663221; http://dx.doi.org/10.1016/S1360-1385(03)00015-3
  • Kim EH, Chow WS, Horton P, Anderson JM. Entropy-assisted stacking of thylakoid membranes. Biochim Biophys Acta 2005; 1708:187-95; PMID:15953475; http://dx.doi.org/10.1016/j.bbabio.2005.03.011
  • Iwasa K, Tasaki I. Mechanical changes in squid giantaxons associated with production of action potentials. Biochem Biophys Research Comm 1980; 95:1328-31; http://dx.doi.org/10.1016/0006-291X(80)91619-8
  • Iwasa K, Tasaki I, Gibbons RC. Swelling of nerve fibres associated with action potentials. Science 1980; 210:338-9; PMID:7423196; http://dx.doi.org/10.1126/science.7423196
  • Terakawa S. Changes in intracellular pressure in squid giant axons associated with production of action potentials. Biochem Biophys Res Commun 1983; 114:1006-10; PMID:6615499; http://dx.doi.org/10.1016/0006-291X(83)90661-7
  • Heimburg T. Nerves and anaesthesia: A physics perspective on medicine. Anest Ratown 2014; 8:252-63
  • Abbott BC, Hill AV, Howarth JV. The positive and negative heat production associated with a nerve impulse. Proc Roy Soc London B 1958; 148:149-87; http://dx.doi.org/10.1098/rspb.1958.0012
  • Ritchie JM, Keynes RD. The production and absorption of heat associated with electrical activity in nerve and electric organ. Q Rev Biophys 1985; 18:451-76; PMID:3916342; http://dx.doi.org/10.1017/S0033583500005382
  • Tasaki I, Byrne PM. Heat production associated with synaptic transmission in the bullfrog spinal cord. Brain Res 1987; 407:386-9; PMID:3032367; http://dx.doi.org/10.1016/0006-8993(87)91119-X
  • Ueda I, Yoshida T. Hydration of lipid membranes and the action mechanisms of anesthetics and alcohols. Chem Phys Lip 1999; 101:65-79; http://dx.doi.org/10.1016/S0009-3084(99)00056-0
  • Papahadjopoulos D, Jacobson K, Poste G, Shepherd G. Effects of local anesthetics on membrane properties. I. Changes in the fluidity of phospholipid bilayers. Biochim Biophys Acta 1975; 394: 504-19; PMID:1148230; http://dx.doi.org/10.1016/0005-2736(75)90137-6
  • Zapata-Morin PA, Sierra-Valdez FJ, Ruiz-Suárez JC. The interaction of local anesthetics with lipid membranes. J Mol Graph Model 2014; 53:200-5; PMID:25181454; http://dx.doi.org/10.1016/j.jmgm.2014.08.001
  • Cherkin A, Catchpool JF. Temperature dependence of anesthesia in goldfish. Science 1964; 144:1460-2; PMID:14171540; http://dx.doi.org/10.1126/science.144.3625.1460
  • Martin BJ. Evaluation of hypothermia for anesthesia in reptiles and amphibians. ILAR J 1995; 37:186-90; PMID:11528038; http://dx.doi.org/10.1093/ilar.37.4.186
  • Franks NP, Lieb WR. Temperature dependence of the potency of volatile general anesthetics: implications for in vitro experiments. Anesthesiology 1996; 84:716-20; PMID:8659800; http://dx.doi.org/10.1097/00000542-199603000-00027
  • Yamamoto E, Akimoto T, Shimizu H, Hirano Y, Yasui M, Yasuoka K. Diffusive natureof xenon anesthetic changes properties of a lipid bilayer: molecular dynamics simulations. J Phys Chem B 2012; 116:8989-95; PMID:22715916; http://dx.doi.org/10.1021/jp303330c
  • Booker RD, Sum AK. Biophysical changes induced by xenon on phospholipid bilayers. Biochim Biophys Acta 2013; 1828:1347-56; PMID:23376329; http://dx.doi.org/10.1016/j.bbamem.2013.01.016
  • Johnson FH, Flagler EA. Hydrostatic pressure reversal of narcosis in tadpoles. Science 1950; 112:91-2; PMID:15442245; http://dx.doi.org/10.1126/science.112.2899.91-a
  • Lundbaek JA, Collingwood SA, Ingólfsson HI, Kapoor R, Andersen OS. Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. J R Soc Interface 2010; 7:373-95; PMID:19940001; http://dx.doi.org/10.1098/rsif.2009.0443
  • Heimburg T, Jackson AD. The thermodynamics of general anesthesia. Biophys J 2007; 92:3159-65; PMID:17293400; http://dx.doi.org/10.1529/biophysj.106.099754
  • Graesbøll K, Sasse-Middelhoff H, Heimburg T. The thermodynamics of general and local anesthesia. Biophys J 2014; 106:2143-56; PMID:24853743; http://dx.doi.org/10.1016/j.bpj.2014.04.014
  • Schrödinger E. What Is Life? The Physical Aspect of the Living Cell. Based on lectures delivered under the auspices of the Dublin Institute for Advanced Studies at Trinity College, Dublin, in February 1943. Cambridge University Press; 1944.
  • Annila A, Baverstock K. Genes without prominence: a reappraisal of the foundations of biology. J R Soc Interface 2014; 11:20131017; PMID:24554573; http://dx.doi.org/10.1098/rsif.2013.1017
  • Ben Jacob E, Becker I, Shapira Y, Levine H. Bacterial linguistic communication and social intelligence. Trends Microbiol 2004; 12:366-72; PMID:15276612; http://dx.doi.org/10.1016/j.tim.2004.06.006
  • Ben Jacob E, Shapira Y, Tauber AI. Seeking the foundations of cognition in bacteria: from Schrödinger's negative entropy to latent information. Physica A 2006; 359:495-524.
  • Ben-Jacob E, Lu M, Schultz D, Onuchic JN. The physics of bacterial decision making. Front Cell Infect Microbiol 2014; 4:154; PMID:25401094; http://dx.doi.org/10.3389/fcimb.2014.00154
  • Bray D. Wetware: a Computer in Every Living Cell. 2009; New Haven; London: Yale University Press.
  • Cox RP, Krauss MR, Balis ME, Dancis J. Studies on cell communication with enucleated human fibroblasts. J Cell Biol 1976; 71:693-703; PMID:993266; http://dx.doi.org/10.1083/jcb.71.3.693
  • Hämmerling J. Nucleo-cytoplasmic interactions in Acetabularia and other cells. Ann Rev Plant Physiol 1963; 14:65-92; http://dx.doi.org/10.1146/annurev.pp.14.060163.000433
  • Chapman CJ, Nugent NA, Schreiber RW. Nucleic acid synthesis in the chloroplasts of Acetabularia mediterranea. Plant Physiol 1966; 41:589-92; PMID:5932403; http://dx.doi.org/10.1104/pp.41.4.589
  • Nagel T. Mind and Cosmos: Why the Materialist Neo-Darwinian Conception of Nature is Almost Certainly False. Oxford University Press; 2012.
  • Searle J. Theory of mind and Darwin's legacy. Proc Natl Acad Sci USA 2013; 110: 10343-8; PMID:23754416; http://dx.doi.org/10.1073/pnas.1301214110
  • Bastian B, Jetten J, Hornsey MJ, Leknes S. The positive consequences of pain: a biopsychosocial approach. Pers Soc Psychol Rev 2014; 18:256-279; PMID:24727972; http://dx.doi.org/10.1177/1088868314527831
  • Heil M. Damaged-self recognition as a general strategy for injury detection. Plant Signal Behav 2012; 7:576-80; PMID:22516811; http://dx.doi.org/10.4161/psb.19921
  • Heil M, Land WG. Danger signals - damaged-self recognition across the tree of life. Front Plant Sci 2014; 5:578; PMID:25400647; http://dx.doi.org/10.3389/fpls.2014.00578
  • Heil M, Ibarra-Laclette E, Adame-Álvarez RM, Martínez O, Ramirez-Chávez E, Molina-Torres J, Herrera-Estrella L. How plants sense wounds: damaged-self recognition is based on plant-derived elicitors and induces octadecanoid signaling. PLoS One 2012; 7:e30537; PMID:22347382; http://dx.doi.org/10.1371/journal.pone.0030537
  • Trewavas AJ, Baluška F. The ubiquity of consciousness. EMBO Rep 2011; 12:1221-5; PMID:22094270; http://dx.doi.org/10.1038/embor.2011.218
  • Vandekerckhove M, Bulnes LC, Panksepp J. The emergence of primary anoetic consciousness in episodic memory. Front Behav Neurosci 2014; 7:210; PMID:24427125; http://dx.doi.org/10.3389/fnbeh.2013.00210
  • Fabbro F, Aglioti SM, Bergamasco M, Clarici A, Panksepp J. Evolutionary aspects of self- and world consciousness in vertebrates. Front Hum Neurosci 2015; 9:157; PMID:25859205; http://dx.doi.org/10.3389/fnhum.2015.00157