1,349
Views
21
CrossRef citations to date
0
Altmetric
Mini-Review Article

Copper(II) and the pathological H50Q α-synuclein mutant: Environment meets genetics

, , , , &
Article: e1270484 | Received 07 Nov 2016, Accepted 01 Dec 2016, Published online: 06 Feb 2017

References

  • McCann H, Stevens CH, Cartwright H, Halliday GM. α-Synucleinopathy phenotypes. Park Relat Disord 2014; 20:S62-7; http://dx.doi.org/10.1016/S1353-8020(13)70017-8
  • Santner A, Uversky VN. Metalloproteomics and metal toxicology of alpha-synuclein. Metallomics 2010; 2:378-92; PMID:21072383; http://dx.doi.org/10.1039/b926659c
  • Petrucci S, Ginevrino M, Valente EM. Phenotypic spectrum of alpha-synuclein mutations: New insights from patients and cellular models. Parkinsonism Relat Disord 2016; 22:S16-20; PMID:26341711; http://dx.doi.org/10.1016/j.parkreldis.2015.08.015
  • Villar-Piqué A, Lopes da Fonseca T, Sant'Anna R, Szegö ÉM, Fonseca-Ornelas L, Pinho R, Carija A, Gerhardt E, Masaracchia C, Abad Gonzalez E, et al. Environmental and genetic factors support the dissociation between α-synuclein aggregation and toxicity. Proc Natl Acad Sci USA 2016; In press. http://www.pnas.org/content/early/2016/10/04/1606791113.abstract
  • Khalaf O, Fauvet B, Oueslati A, Dikiy I, Mahul-Mellier AL, Ruggeri FS, Mbefo MK, Vercruysse F, Dietler G, Lee SJ, et al. The H50Q mutation enhances alpha-synuclein aggregation, secretion, and toxicity. J Biol Chem 2014; 289:21856-76; PMID:24936070; http://dx.doi.org/10.1074/jbc.M114.553297
  • Rutherford NJ, Moore BD, Golde TE, Giasson BI. Divergent effects of the H50Q and G51D SNCA mutations on the aggregation of α-synuclein. J Neurochem 2014; 131:859-67; PMID:24984882; http://dx.doi.org/10.1111/jnc.12806
  • Ghosh D, Mondal M, Mohite GM, Singh PK, Ranjan P, Anoop A, Ghosh S, Jha NN, Kumar A, Maji SK. The parkinson's disease-associated H50Q mutation accelerates α-synuclein aggregation in vitro. Biochemistry 2013; 52:6925-7; PMID:24047453; http://dx.doi.org/10.1021/bi400999d
  • Uversky VN, Li J, Fink AL. Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein: A possible molecular link between parkinson's disease and heavy metal exposure. J Biol Chem 2001; 276:44284-96; PMID:11553618; http://dx.doi.org/10.1074/jbc.M105343200
  • Dudzik CG, Walter ED, Millhauser GL. Coordination features and affinity of the Cu(2+) site in the alpha-synuclein protein of Parkinson's disease. Biochemistry 2011; 50:1771-7; PMID:21319811; http://dx.doi.org/10.1021/bi101912q
  • Sung YH, Rospigliosi C, Eliezer D. NMR mapping of copper binding sites in alpha-synuclein. Biochim Biophys Acta 2006; 1764:5-12; PMID:16338184; http://dx.doi.org/10.1016/j.bbapap.2005.11.003
  • Ahmad A, Burns CS, Fink AL, Uversky VN. Peculiarities of copper binding to alpha-synuclein. J Biomol Struct Dyn 2012; 29:825-42; PMID:22208282; http://dx.doi.org/10.1080/073911012010525023
  • Binolfi A, Rodriguez EE, Valensin D, D'Amelio N, Ippoliti E, Obal G, Duran R, Magistrato A, Pritsch O, Zweckstetter M, et al. Bioinorganic chemistry of Parkinson's disease: Structural determinants for the copper-mediated amyloid formation of alpha-synuclein. Inorg Chem 2010; 49:10668-79; PMID:20964419; http://dx.doi.org/10.1021/ic1016752
  • Rose F, Hodak M, Bernholc J. Mechanism of copper(II)-induced misfolding of Parkinson's disease protein. Sci Rep 2011; 1:11; PMID:22355530; http://dx.doi.org/10.1038/srep00011
  • Rasia RM, Bertoncini CW, Marsh D, Hoyer W, Cherny D, Zweckstetter M, Griesinger C, Jovin TM, Fernández CO. Structural characterization of copper(II) binding to alpha-synuclein: Insights into the bioinorganic chemistry of Parkinson's disease. Proc Natl Acad Sci U S A 2005; 102:4294-9; PMID:15767574; http://dx.doi.org/10.1073/pnas.0407881102
  • Chi YC, Armstrong GS, Jones DNM, Eisenmesser EZ, Liu CW. Residue histidine 50 plays a key role in protecting α-Synuclein from aggregation at physiological pH. J Biol Chem 2014; 289:15474-81; PMID:24742669; http://dx.doi.org/10.1074/jbc.M113.544049
  • Chiera NM, Rowinska-Zyrek M, Wieczorek R, Guerrini R, Witkowska D, Remelli M, Kozlowski H. Unexpected impact of the number of glutamine residues on metal complex stability. Metallomics 2013; 5:214-21; PMID:23370132; http://dx.doi.org/10.1039/c3mt20166j
  • De Ricco R, Valensin D, Dell'Acqua S, Casella L, Dorlet P, Faller P, Hureau C. Remote His50 acts as a coordination switch in the high-affinity N-terminal centered copper(II) Site of α-Synuclein. Inorg Chem 2015; 54:4744-51; PMID:25926427; http://dx.doi.org/10.1021/acs.inorgchem.5b00120
  • Mason RJ, Paskins AR, Dalton CF, Smith DP. Copper binding and subsequent aggregation of alpha-synuclein are modulated by N-terminal acetylation and ablated by the H50Q missense mutation. Biochemistry 2016; 55:4737-41; PMID:27517125; http://dx.doi.org/10.1021/acs.biochem.6b00708
  • Proukakis C, Dudzik CG, Brier T, MacKay DS, Cooper JM, Millhauser GL, Houlden H, Schapira AH. A novel alpha-synuclein missense mutation in Parkinson disease. Neurology 2013; 80:1062-4; PMID:23427326; http://dx.doi.org/10.1212/WNL.0b013e31828727ba
  • Valensin D, Camponeschi F, Luczkowski M, Baratto MC, Remelli M, Valensin G, Kozlowski H. The role of His-50 of alpha-synuclein in binding Cu(II): pH dependence, speciation, thermodynamics and structure. Metallomics 2011; 3(3):292-302; PMID:21212878; http://dx.doi.org/10.1039/c0mt00068j
  • Laio A, VandeVondele J, Rothlisberger U. A Hamiltonian electrostatic coupling scheme for hybrid Car-Parrinello molecular dynamics simulations. J Chem Phys 2002; 116(16):6941-6947