1,068
Views
12
CrossRef citations to date
0
Altmetric
Short Communication

Immunogold-EM analysis reveal brefeldin a-sensitive clusters of auxin in Arabidopsis root apex cells

, , &
Article: e1327105 | Received 01 Feb 2017, Accepted 29 Apr 2017, Published online: 30 Jun 2017

References

  • Darwin C (with Darwin F). The Power of Movement in Plants. John Murray, London; 1880.
  • Went F, Thimann KV. Phytohormones. MacMillan Company, New York; 1937.
  • Boysen-Jensen P. Über die Leitung des phototropischen Reizes in der Avenakoleoptile. Ber Deut Bot Ges 1913; 31:559-66.
  • Went FW. On growth-accelerating substances in the coleoptile of Avena sativa. Proc Kon Ned Akad Wet 1926; 30:1.
  • Kögl F, Haagen-Smit AJ, Erxleben H. Über den Einfluss der Auxine auf das Wurzelwachstum und über die chemische Natur des Auxins der Graskoleoptilen. Zeit Physiol Chem 1934; 228:104-12; https://doi.org/10.1515/bchm2.1934.228.1-2.104 10.1515/bchm2.1934.228.1-2.90 10.1515/bchm2.1934.228.3-6.113
  • Haagen-Smit AJ, Dandliker WB, Wittwer SH, Murneek AE. Isolation of 3-indoleacetic acid from immature corn kernels. Am J Bot 1946; 33:118-20; https://doi.org/10.2307/2437327
  • Ciesielski T. 1872. Untersuchungen über die Abwärtskrümmung der Wurzel. Beitr Biol Pflanzen 1872; 1:1-30.
  • Heslop Harrison J. Darwin and the movement of plants: a retrospect. In: Skoog F (ed), Plant Growth Substances 1979, Springer Verlag 1980; 3-14.
  • Juniper BE, Groves S, Landau-Schachar B, Audus LJ. Root cap and the perception of gravity. Nature 1966; 209:93-4; https://doi.org/10.1038/209093a0
  • Konings H. The significance of the root cap for geotropism. Acta Bet Neerl 1968; 17:203-21; https://doi.org/10.1111/j.1438-8677.1968.tb00074.x
  • Pilet PE. Root cap and georeaction. Nat New Biol 1971; 233:115-6; PMID:5315327; https://doi.org/10.1038/233115a0 10.1038/newbio233115b0 10.1038/newbio233115a0
  • Barlow PW. Recovery of geotropism after removal of the root cap. J Exp Bot 1974; 25:1137-46; https://doi.org/10.1093/jxb/25.6.1137
  • Wilkins H, Wain RL. The role of the root cap in the response of the primary roots of Zea mays L. seedlings to white light and to gravity. Planta 1975; 123:217-22; PMID:24435121; https://doi.org/10.1007/BF00390700
  • Mancuso S, Barlow PW, Volkmann D, Baluška F. Actin turnover-mediated gravity response in maize root apices: gravitropism of decapped roots implicates gravisensing outside of the root cap. Plant Signal Behav 2009; 1:52-8; https://doi.org/10.4161/psb.1.2.2432
  • Baluška F, Mancuso S, Volkmann D, Barlow PW. The 'root-brain' hypothesis of Charles and Francis Darwin: Revival after more than 125 years. Plant Signal Behav 2009; 4:1121-7; PMID:20514226; https://doi.org/10.4161/psb.4.12.10574 10.4161/psb.4.6.8870
  • Paque S, Weijers D. Auxin: the plant molecule that influences almost anything. BMC Biol 2016; 14:67; PMID:27510039; https://doi.org/10.1186/s12915-016-0291-0
  • Woodward AW, Bartel B. Auxin: regulation, action, and interaction. Ann Bot 2005; 95:707-35; PMID:15749753; https://doi.org/10.1093/aob/mci083
  • Cande WZ, Ray PM. Nature of cell-to-cell transfer of auxin in polar transport. Planta 1976; 129:43-52; PMID:24430814; https://doi.org/10.1007/BF00390912
  • Drake G, Carr DJ. Plasmodesmata, tropisms, and auxin transport. J Exp Bot 1978; 28:1309-18; https://doi.org/10.1093/jxb/29.6.1309
  • Simon S, Petrášek J. Why plants need more than one type of auxin. Plant Sci 2011; 180:454-60; PMID:21421392; https://doi.org/10.1016/j.plantsci.2010.12.007
  • Han X, Hyun TK, Zhang M, Kumar R, Koh EJ, Kang BH, Lucas WJ, Kim JY. Auxin-callose-mediated plasmodesmal gating is essential for tropic auxin gradient formation and signaling. Dev Cell 2014; 28:132-46; PMID:24480642; https://doi.org/10.1016/j.devcel.2013.12.008
  • Enders TA, Strader LC. Auxin activity: Past, present, and future. Am J Bot 2015; 102:180-96; PMID:25667071; https://doi.org/10.3732/ajb.1400285
  • Lomax TL, Mehlhorn RJ, Briggs WR. Active auxin uptake by zucchini membrane vesicles: quantitation using ESR volume and delta pH determinations. Proc Natl Acad Sci USA 1985; 82:6541-5; PMID:2995970; https://doi.org/10.1073/pnas.82.19.6541
  • Schlicht M, Strnad M, Scanlon MJ, Mancuso S, Hochholdinger F, Palme K, Volkmann D, Menzel D, Baluška F. Auxin immunolocalization implicates vesicular neurotransmitter-like mode of polar auxin transport in root apices. Plant Signal Behav 2006; 1:122-33; PMID:19521492; https://doi.org/10.4161/psb.1.3.2759
  • Šamaj J, Baluška F, Voigt B, Schlicht M, Volkmann D, Menzel M. Endocytosis, actin cytoskeleton, and signaling. Plant Physiol 2004; 135:1150-61; PMID:15266049; https://doi.org/10.1104/pp.104.040683
  • Bergersen LH, Storm-Mathisen J, Gundersen V. Immunogold quantification of amino acids and proteins in complex subcellular compartments. Nat Protoc 2008; 3:144-52; PMID:18193031; https://doi.org/10.1038/nprot.2007.525
  • Bergersen LH, Morland C, Ormel L, Rinholm JE, Larsson M, Wold JF, Røe AT, Stranna A, Santello M, Bouvier D, Ottersen OP, Volterra A, Gundersen V. Immunogold detection of L-glutamate and D-serine in small synaptic-like microvesicles in adult hippocampal astrocytes. Cereb Cortex 2012; 22:1690-7; PMID:21914633; https://doi.org/10.1093/cercor/bhr254
  • Mancuso S, Marras AM, Mugnai S, Schlicht M, Zársky V, Li G, Song L, Xue HW, Baluška F. Phospholipase dzeta2 drives vesicular secretion of auxin for its polar cell-cell transport in the transition zone of the root apex. Plant Signal Behav 2007; 2:240-4; PMID:19516994; https://doi.org/10.4161/psb.2.4.4566
  • Krecek P, Skupa P, Libus J, Naramoto S, Tejos R, Friml J, Zazímalová E. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol 2009; 10:249; PMID:20053306; https://doi.org/10.1186/gb-2009-10-12-249
  • Rakusová H, Fendrych M, Friml J. Intracellular trafficking and PIN-mediated cell polarity during tropic responses in plants. Curr Opin Plant Biol 2015; 23:116-23; PMID:25553419; https://doi.org/10.1016/j.pbi.2014.12.002
  • Adamowski M, Friml J. PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 2016; 27:20-32; https://doi.org/10.1105/tpc.114.134874
  • Vanneste S, Friml J. Auxin: a trigger for change in plant development. Cell 2009; 136:1005-16; PMID:19303845; https://doi.org/10.1016/j.cell.2009.03.001
  • Petrášek J, Friml J. Auxin transport routes in plant development. Development 2009: 136:2675-88; PMID:19633168; https://doi.org/10.1242/dev.030353
  • Paciorek T, Friml J. Auxin signaling, J Cell Sci 2006; 119, 1199-202.
  • Merks RM, Van de Peer Y, Inzé D, Beemster GT. Canalization without flux sensors: a traveling-wave hypothesis. Trends Plant Sci 2007; 12:384-90; PMID:17765595; https://doi.org/10.1016/j.tplants.2007.08.004
  • Baluška F, Schlicht M, Volkmann D, Mancuso S. Vesicular secretion of auxin: Evidences and implications. Plant Signal Behav 2008; 3:254-6; PMID:19704646; https://doi.org/10.4161/psb.3.4.5183
  • Baluška F, Mancuso S. Root apex transition zone as oscillatory zone. Front Plant Sci 2013; 4:354; PMID:24106493; https://doi.org/10.3389/fpls.2013.00354
  • Geldner N, Friml J, Stierhof YD, Jurgens G, Palme K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 2001;413:425-8; PMID:11574889; https://doi.org/10.1038/35096571
  • Friml J, Wisniewska J, Benkova E, Mendgen K, Palme K. Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 2002;415:806-9; PMID:11845211; https://doi.org/10.1038/415806a
  • Dhonukshe P, Grigoriev I, Fischer R, Tominaga M, Robinson DG, Hasek J, Paciorek T, Petrasek J, Seifertova D, Tejos R, Meisel LA, Zazimalova E, Gadella TW, Jr, Stierhof YD, Ueda T, Oiwa K, Akhmanova A, Brock R, Spang A, Friml J. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc Natl Acad Sci USA 2008;105:4489-94; PMID:18337510; https://doi.org/10.1073/pnas.0711414105
  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 2003; 112:219-30; PMID:12553910; https://doi.org/10.1016/S0092-8674(03)00003-5
  • Toyota M, Furuichi T, Tatsumi H, Sokabe M. Critical consideration on the relationship between auxin transport and calcium transients in gravity perception of Arabidopsis seedlings. Plant Signal Behav 2008; 3:521-4; PMID:19513245; https://doi.org/10.4161/psb.3.8.6339
  • Liu JT, Hu LS, Liu YL, Chen RS, Cheng Z, Chen SJ, Amatore C, Huang WH, Huo KF. Real-time monitoring of auxin vesicular exocytotic efflux from single plant protoplasts by amperometry at microelectrodes decorated with nanowires. Angew Chem Int Ed Engl 2014; 53:2643-7; PMID:24482020; https://doi.org/10.1002/anie.201408226 10.1002/anie.201408153 10.1002/anie.201406258 10.1002/anie.201406764 10.1002/anie.201308972 10.1002/anie.201408298 10.1002/anie.201403463 10.1002/anie.201403998 10.1002/anie.201404197 10.1002/anie.201404643 10.1002/anie.201407799 10.1002/anie.201408795 10.1002/anie.201408493 10.1002/anie.201408269 10.1002/anie.201408927 10.1002/anie.201408896
  • Wang W, Zhang SH, Li LM, Wang ZL, Cheng JK, Huang WH. Monitoring of vesicular exocytosis from single cells using micrometer and nanometer-sized electrochemical sensors. Anal Bioanal Chem 2009; 394:17-32; PMID:19274456; https://doi.org/10.1007/s00216-009-2703-2 10.1007/s00216-009-2832-7 10.1007/s00216-009-2759-z
  • Li YT, Zhang SH, Wang L, Xiao RR, Liu W, Zhang XW, Zhou Z, Amatore C, Huang WH. Nanoelectrode for amperometric monitoring of individual vesicular exocytosis inside single synapses. Angew Chem Int Ed Engl 2014; 53:12456-60; PMID:25060546; https://doi.org/10.1002/anie.201409314 10.1002/anie.201403817 10.1002/anie.201404320 10.1002/anie.201407225 10.1002/anie.201407000 10.1002/anie.201407211 10.1002/anie.201405779 10.1002/anie.201406554 10.1002/anie.201408757 10.1002/anie.201406180 10.1002/anie.201408265 10.1002/anie.201405058 10.1002/anie.201407935 10.1002/anie.201405178 10.1002/anie.201408754
  • Li YT, Zhang SH, Wang XY, Zhang XW, Oleinick AI, Svir I, Amatore C, Huang WH. Real-time monitoring of discrete synaptic release events and excitatory potentials within self-reconstructed neuromuscular junctions. Angew Chem Int Ed Engl 2015; 54:9313-8; PMID:26079517; https://doi.org/10.1002/anie.201507157 10.1002/anie.201505242 10.1002/anie.201584261 10.1002/anie.201507272 10.1002/anie.201506972 10.1002/anie.201505192 10.1002/anie.201505232 10.1002/anie.201507608 10.1002/anie.201584461 10.1002/anie.201507176 10.1002/anie.201505278 10.1002/anie.201505329 10.1002/anie.201506458 10.1002/anie.201505064 10.1002/anie.201503801 10.1002/anie.201505025
  • Lewis DR, Olex AL, Lundy SR, Turkett WH, Fetrow JS, Muday GK. A kinetic analysis of the auxin transcriptome reveals cell wall remodeling proteins that modulate lateral root development in Arabidopsis. Plant Cell 2013; 25:3329-46; PMID:24045021; https://doi.org/10.1105/tpc.113.114868
  • Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 1999; 99:463-72; PMID:10589675; https://doi.org/10.1016/S0092-8674(00)81535-4
  • Mähönen AP, ten Tusscher K, Siligato R, Smetana O, Díaz-Triviño S, Salojärvi J, Wachsman G, Prasad K, Heidstra R, Scheres B. PLETHORA gradient formation mechanism separates auxin responses. Nature 2014; 515:125-9; PMID:25156253; https://doi.org/10.1038/nature13663
  • Santuari L, Sanchez-Perez GF, Luijten M, Rutjens B, Terpstra I, Berke L, Gorte M, Prasad K, Bao D, et al. The PLETHORA gene regulatory network guides growth and cell differentiation in Arabidopsis roots. Plant Cell 2016: In press; PMID:27920338; https://doi.org/10.1105/tpc.16.00656
  • Grebe M. Growth by auxin: when a weed needs acid. Science 2005; 310:60-1; PMID:16210521; https://doi.org/10.1126/science.1119735
  • Li J, Yang H, Peer WA, Richter G, Blakeslee J, Bandyopadhyay A, Titapiwantakun B, Undurraga S, Khodakovskaya M, Richards EL, Krizek B, Murphy AS, Gilroy S, Gaxiola R. Arabidopsis H+-PPase AVP1 regulates auxin-mediated organ development. Science 2005; 310:121-5; PMID:16210544; https://doi.org/10.1126/science.1115711 10.1126/science.1118391
  • Yang H, Zhang X, Gaxiola RA, Xu G, Peer WA, Murphy AS. Over-expression of the Arabidopsis proton-pyrophosphatase AVP1 enhances transplant survival, root mass, and fruit development under limiting phosphorus conditions. J Exp Bot 2014; 65:3045-53; PMID:24723407; https://doi.org/10.1093/jxb/eru139 10.1093/jxb/eru149 10.1093/jxb/eru259
  • Ratajczak R, Hinz G, Robinson DG. Localization of pyrophosphatase in membranes of cauliflower inflorescence cells. Planta 1999; 208: 205-11; PMID:10333584; https://doi.org/10.1007/s004250050551
  • Mitsuda N, Enami K, Nakata M, Takeyasu K, Sato MH. Novel type Arabidopsis thaliana H+-PPase is localized to the Golgi apparatus. FEBS Letts 2001; 488:29-33; https://doi.org/10.1016/S0014-5793(00)02400-5
  • Kriegel A, Andrés Z, Medzihradszky A, Krüger F, Scholl S, Delang S, Patir-Nebioglu MG, Gute G, Yang H, Murphy AS, Peer WA, Pfeiffer A, Krebs M, Lohmann JU, Schumacher K. Job sharing in the endomembrane system: vacuolar acidification requires the combined activity of V-ATPase and V-PPase. Plant Cell 2015; 27:3383-96; PMID:26589552; https://doi.org/10.1105/tpc.15.00733
  • Schilling RK, Tester M, Marschner P, Plett DC, Roy SJ. AVP1: one protein, many roles. Trends Plant Sci 2016; In press; PMID:27989652
  • Steinmann T, Geldner N, Grebe M, Mangold S, Jackson CL, Paris S, Gälweiler L, Palme K, Jürgens G. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF. Science 1999; 286:316-8; PMID:10514379; https://doi.org/10.1126/science.286.5438.316
  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 2003; 112:219-30; PMID:12553910; https://doi.org/10.1016/S0092-8674(03)00003-5
  • Geldner N, Richter S, Vieten A, Marquardt S, Torres-Ruiz RA, Mayer U, Jürgens G. Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis. Development 2004; 131:389-400; PMID:14681187; https://doi.org/10.1242/dev.00926
  • Baluška F, Hlavacka A, Šamaj J, Palme K, Robinson DG, Matoh T, McCurdy DW, Menzel D, Volkmann D. F-actin-dependent endocytosis of cell wall pectins in meristematic root cells. Insights from brefeldin A-induced compartments. Plant Physiol 2002; 130:422-31.
  • Baluška F, Liners A, Hlavacka A, Schlicht M, van Custem P, McCurdy DW, Menzel D. Cell wall pectins and xyloglucans are internalized into dividing root cells and accumulate within cell plates during cytokinesis. Protoplasma 2005; 225:141-55; PMID:16228896; https://doi.org/10.1007/s00709-005-0095-5
  • Mancuso S, Marras AM, Magnus V, Baluska F. Noninvasive and continuous recordings of auxin fluxes in intact root apex with a carbon nanotube-modified and self-referencing microelectrode. Anal Biochem 2005; 341:344-51; PMID:15907881; https://doi.org/10.1016/j.ab.2005.03.054
  • Kollmeier M, Felle HH, Horst WJ. Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiol 2000; 122:945-56; PMID:10712559
  • Shen H, Hou NY, Schlicht M, Wan YL, Mancuso S, Baluška F. 2008. Aluminium toxicity targets PIN2 in Arabidopsis root apices: effects on PIN2 endocytosis, vesicular recycling, and polar auxin transport. Chin Sci Bull 2008; 53:2480-7; https://doi.org/10.1007/s11434-008-0143-6 10.1007/s11434-008-0107-x
  • Amenós M, Corrales I, Poschenrieder C, Illés P, Baluska F, Barceló J. Different effects of aluminum on the actin cytoskeleton and brefeldin A-sensitive vesicle recycling in root apex cells of two maize varieties differing in root elongation rate and aluminum tolerance. Plant Cell Physiol 2009; 50:528-40. J Exp Bot 2006; 57:4201-13; PMID:19176573; https://doi.org/10.1093/pcp/pcp013
  • Illés P, Schlicht M, Pavlovkin J, Lichtscheidl I, Baluška F, Ovecka M. Aluminium toxicity in plants: internalization of aluminium into cells of the transition zone in Arabidopsis root apices related to changes in plasma membrane potential, endosomal behaviour, and nitric oxide production. J Exp Bot 2006; 57:4201-13; PMID:17085753; https://doi.org/10.1093/jxb/erl197
  • Yang ZB, Geng X, He C, Zhang F, Wang R, Horst WJ, Ding Z. TAA1-regulated local auxin biosynthesis in the root-apex transition zone mediates the aluminum-induced inhibition of root growth in Arabidopsis. Plant Cell 2014; 26:2889-904; PMID:25052716; https://doi.org/10.1105/tpc.114.127993 10.1105/tpc.114.124867 10.1105/tpc.114.133769 10.1105/tpc.114.129965
  • Liu G, Gao S, Tian H, Wu W, Robert HS, Ding Z. Local transcriptional control of YUCCA regulates auxin promoted root-growth inhibition in response to aluminium stress in Arabidopsis. PLoS Genet 2016; 12:e1006360; PMID:27716807; https://doi.org/10.1371/journal.pgen.1006085 10.1371/journal.pgen.1006373 10.1371/journal.pgen.1005742 10.1371/journal.pgen.1006460 10.1371/journal.pgen.1005818 10.1371/journal.pgen.1005767 10.1371/journal.pgen.1006360 10.1371/journal.pgen.1006026 10.1371/journal.pgen.1006083
  • Leyser O. Auxin, self-organisation, and the colonial nature of pants. Curr Biol 2011; 21:R331-7; PMID:21549955; https://doi.org/10.1016/j.cub.2011.02.031
  • Bennett T, Hines G, van Rongen M, Waldie T, Sawchuk MG, Scarpella E, Ljung K, Leyser O. Connective auxin transport in the shoot facilitates communication between shoot apices. PLoS Biol 2016; 14:e1002446; PMID:27119525; https://doi.org/10.1371/journal.pbio.1002446
  • Baluška F, Šamaj J, Menzel D. Polar transport of auxin: carrier-mediated flux across the plasma membrane or neurotransmitter-like secretion? Trends Cell Biol 2003: 13:282-5; PMID:12791291; https://doi.org/10.1016/S0962-8924(03)00084-9
  • Baluška F, Volkmann D, Menzel D. Plant synapses: actin-based domains for cell-to-cell communication. Trends Plant Sci 2005; 10:106-11; PMID:15749467; https://doi.org/10.1016/j.tplants.2005.07.004 10.1016/j.tplants.2005.01.002
  • Bennett T, Hines G, Leyser O. Canalization: what the flux? Trends Genet 2014; 30:41-8; PMID:24296041; https://doi.org/10.1016/j.tig.2013.11.001
  • Boot KJM, Libbenga KR, Hille SC, Offringa R, van Duijn B. Polar auxin transport: an early invention. J Exp Bot 2012; 63:4213-8; PMID:22473986; https://doi.org/10.1093/jxb/ers106
  • Peremyslov VV, Morgun EA, Kurth EG, Makarova KS, Koonin EV, Dolja VV. Identification of myosin XI receptors in Arabidopsis defines a distinct class of transport vesicles. Plant Cell 2013; 25: 3022-3038; PMID:23995081; https://doi.org/10.1105/tpc.113.113704
  • Kurtha EG, Peremyslova VV, Turnera HL, Makarova KS, Iranzo J, Mekhedov SL, Koonin EV, Dolja VV. Myosin-driven transport network in plants. Proc Natl Acad Sci USA 2017; 114:E1385-E1394; PMID:28096376; https://doi.org/10.1073/pnas.1620577114
  • Drdová EJ, Synek L, Pečenková T, Hála M, Kulich I, Fowler JE, Murphy AS, Zárský V. The exocyst complex contributes to PIN auxin efflux carrier recycling and polar auxin transport in Arabidopsis. Plant J 2013; 73:709-19.
  • Tan X, Feng Y, Liu Y, Bao Y. Mutations in exocyst complex subunit SEC6 gene impaired polar auxin transport and PIN protein recycling in Arabidopsis primary root. Plant Sci 2016; 250:97-104.
  • Stefano G, Renna L, Lai Y, Slabaugh E, Mannino N, Buono RA, Otegui MS, Brandizzi F. ER network homeostasis is critical for plant endosome streaming and endocytosis. Cell Discov 2015; 1:15033; PMID:27462431; https://doi.org/10.1038/celldisc.2015.33 10.1038/cddiscovery.2015.33
  • Wang HY, Lee MM, Schiefelbein JW. Regulation of the cell expansion gene RHD3 during Arabidopsis development. Plant Physiol 2002; 129: 638-649; PMID:12068108; https://doi.org/10.1104/pp.002675
  • Dhonukshe P, Baluska F, Schlicht M, Hlavacka A, Samaj J, Friml J, Gadella TW Jr.. Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev Cell 2006; 10:137-150; PMID:16399085; https://doi.org/10.1016/j.devcel.2005.11.015
  • Müller J, Beck M, Mettbach U, Komis G, Hause G, Menzel D, Šamaj J. Arabidopsis MPK6 is involved in cell division plane control during early root development, and localizes to the pre-prophase band, phragmoplast, trans-Golgi network and plasma membrane. Plant J 2010; 61:234-48; PMID:19832943; https://doi.org/10.1111/j.1365-313X.2009.04046.x
  • Li R, Liu P, Wan Y, Chen T, Wang Q, Mettbach U, Baluška F, Šamaj J, Fang X, Lucas WJ, Lin J. A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell 2012; 24:2105-22; PMID:22589463; https://doi.org/10.1105/tpc.112.104232 10.1105/tpc.112.105106 10.1105/tpc.112.103945 10.1105/tpc.111.094748 10.1105/tpc.112.095695
  • Nishimura T, Toyooka K, Sato M, Matsumoto S, Lucas MM, Strnad M, Baluska F, Koshiba T. Immunohistochemical observation of indole-3-acetic acid at the IAA synthetic maize coleoptile tips. Plant Signal Behav 2011; 6:2013-22; PMID:22112455; https://doi.org/10.4161/psb.6.12.18080