2,415
Views
35
CrossRef citations to date
0
Altmetric
Review

Senomic view of the cell: Senome versus Genome

Pages 1-9 | Received 21 Mar 2018, Accepted 11 Jun 2018, Published online: 10 Aug 2018

References

  • Richmond ML. Thomas Henry Huxley’s developmental view of the cell. Nat Rev Mol Cell Biol. 2001;3:61–65.
  • Panksepp J. Affective neurosciences. The foundation of human and animal emotions. Oxford, UK: Oxford University Press; 1998.
  • Van Dort CJ, Baghdoyan HA, Lydic R. Neurochemical modulators of sleep and anesthetic states. Int Anesthesiol Clin. 2008;46:75–104.
  • Mashour GA, Alkire MT. Evolution of consciousness: phylogeny, ontogeny, and emergence from general anesthesia. Proc Natl Acad Sci USA. 2013;110(Suppl2):10357–10364.
  • Searle J. Theory of mind and Darwin’s legacy. Proc Natl Acad Sci USA. 2013;110(Suppl2):10343–10348.
  • Curwen C. Music-colour synaesthesia: concept, context and qualia. Conscious Cogn. 2018;61:94–106.
  • Bronfman ZZ, Ginsburg S, Jablonka E. The transition to minimal consciousness through the evolution of associative learning. Front Psychol. 2016;7:1954.
  • Baluška F, Mancuso S. Plant neurobiology: from sensory biology, via plant communication, to social plant behavior. Cogn Process. 2009;10(Suppl 1):S3–S7.
  • Grant SGN. A general basis for cognition in the evolution of synapse signaling complexes. Cold Spring Harb Symp Quant Biol. 2010;74:249.
  • Trewavas AJ, Baluška F. The ubiquity of consciousness. The ubiquity of consciousness, cognition and intelligence in life. EMBO Rep. 2011;12:1221–1225.
  • Perouansky M. The quest for a unified model of anesthetic action: a century in Claude Bernard’s shadow. Anesthesiology. 2012;117:465–474.
  • Grémiaux A, Yokawa K, Mancuso S, et al. Plant anesthesia supports similarities between animals and plants: Claude Bernard’s forgotten studies. Plant Signal Behav. 2014;9:e27886.
  • Rinaldi A. Reawakening anaesthesia research. EMBO Rep. 2014;15:1113–1118.
  • Lyon P. The cognitive cell: bacterial behavior reconsidered. Front Microbiol. 2015;6:264.
  • Baluška F, Yokawa K, Mancuso S, et al. Understanding of anesthesia - why consciousness is essential for life and not based on genes. Commun Integr Biol. 2016;9:e1238118.
  • Vallverdú J, Castro O, Mayne R, et al. Slime mould: the fundamental mechanisms of biological cognition. Biosystems. 2018;165:57–70.
  • Yokawa K, Kagenishi T, Pavlovic A, et al. Anaesthetics stop diverse plant organ movements, affect endocytic vesicle recycling and ROS homeostasis, and block action potentials in Venus flytraps. Ann Bot. 2018. In press.
  • Kováč L. Fundamental principles of cognitive biology. Evol Cogn. 2000;6:51.
  • Kováč L. Life, chemistry and cognition. EMBO Rep. 2006;7:562.
  • Kováč L. Information and knowledge in biology - time for reappraisal. Plant Signal Behav. 2007;2:65.
  • Kováč L. Bioenergetics - a key to brain and mind. Commun Integr Biol. 2008;1:114.
  • Greenspan R. An introduction to nervous systems. New York (NY): Cold Spring Harbor Laboratory Press; 2007.
  • Keijzer FA. Evolutionary convergence and biologically embodied cognition. Inter Foc. 2017;7:20160123.
  • Hobson JA. REM sleep and dreaming: towards a theory of protoconsciousness. Nat Rev Neurosci. 2009;10:803–813.
  • Koseska A, Bastiaens PI. Cell signaling as a cognitive process. EMBO J. 2017;36:568–582.
  • Shapiro J. Bacteria are small but not stupid: cognition, natural genetic engineering and socio-bacteriology. Stud Hist Phil Biol Biomed Sci Part C. 2997;38:807–819.
  • Shapiro JA. Mobile DNA and evolution in the 21st century. Mobile DNA. 2010;1:4.
  • Shapiro JA. Evolution. A view from the 21st century. Saddle River, NJ: FT Press Science; 2011.
  • Shapiro JA. Living organisms author their read-write genomes in evolution. Biology (Basel). 2017;6:42.
  • Baluška F, Mancuso S. Deep evolutionary origins of neurobiology: turning the essence of ‘neural’ upside-down. Commun Integr Biol. 2009;2:62–65.
  • Miller WB. Cognition, information fields and hologenomic entanglement: evolution in light and shadow. Biology (Basel). 2016;5:21.
  • Ford BJ. On intelligence in cells: the case for whole cell biology. Interdiscip Sci Rev. 2009;34:350–365.
  • Ford BJ. Cellular intelligence: microphenomenology and the realities of being. Prog Biophys Mol Biol. 2017;131:273.
  • Miller WB. Biological information systems: evolution as cognition-based information management. Prog Biophys Mol Biol. 2018;134:1.
  • Baluška F, Levin M. On having no head: cognition throughout biological systems. Front Psychol. 2016;7:902.
  • Stock J, Levit M. Signal transduction: hair brains in bacterial chemotaxis. Curr Biol. 2000;10:R11–4.
  • Weiler EW. Sensory principles of higher plants. Angew Chem Int Ed. 2003;42:392–411.
  • Brenner ED, Stahlberg R, Mancuso S, et al. Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci. 2006;11:413–419.
  • Baluška F, Mancuso S, Volkmann D, et al. The ‘root-brain’ hypothesis of Charles and Francis Darwin: revival after more than 125 years. Plant Signal Behav. 2009;4:1121–1127.
  • Baluška F, Mancuso S. Root apex transition zone as oscillatory zone. Front Plant Sci. 2013;4:354.
  • Baluška F, Volkmann D, Menzel D. Plant synapses: actin-based domains for cell-to-cell communication. Trends Plant Sci. 2005;10:106–111.
  • Schlicht M, Strnad M, Scanlon MJ, et al. Auxin immunolocalization implicates vesicular neurotransmitter-like mode of polar auxin transport in root apices. Plant Signal Behav. 2006;1:122–133.
  • Baluška F. Cell-cell channels, viruses, and evolution: via infection, parasitism, and symbiosis toward higher levels of biological complexity. Ann N Y Acad Sci. 2009;1178:106–119.
  • Baluška F, Mancuso S. Microorganism and filamentous fungi drive evolution of plant synapses. Front Cell Infect Microbiol. 2013;3:44.
  • Mettbach U, Strnad M, Mancuso S, et al. Immunogold-EM analysis reveal Brefeldin A-sensitive clusters of auxin in Arabidopsis root apex cells. Commun Integr Biol. 2017;10:e1327105.
  • Baluška F, Mancuso S. Synaptic view of eukaryotic cell. Int J Gen Syst. 2014;43:740–756.
  • Kosik KN. Exploring the early origins of the synapse by comparative genomics. Biol Lett. 2009;5:108–111.
  • Baluška F. Rethinking origins of multicellularity: convergent evolution of epithelia in plants. Bioessays. 2012;34:1085.
  • Agnati LF, Baluška F, Barlow PW, et al. Mosaic, self-similarity logic, and biological attraction principles: three explanatory instruments in biology. Commun Integr Biol. 2009;2:552–563.
  • Torday JS, Miller WB. A systems approach to physiologic evolution: from micelles to consciousness. ‎J Cell Physiol. 2017;1:162–167.
  • Miller WB, Torday JS. A systematic approach to cancer: evolution beyond selection. Clin Transl Med. 2017;6:2.
  • Marijuán PC, Navarro J, del Moral R. How the living is in the world: an inquiry into the informational choreographies of life. Prog Biophys Mol Biol. 2015;31:469–480.
  • Gilbert SF, Sapp J, Tauber AI. A symbiotic view of life: we have never been individuals. Q Rev Biol. 2012;87:325–341.
  • Jose AM. Replicating and cycling stores of information perpetuate life. BioEssays. 2018;40:e1700161.
  • Lintilhac PM. Toward a theory of cellularity – speculations on the nature of the living cell. BioScience. 1999;49:59–68.
  • Loewenstein W. Physics in mind: a quantum view of the brain. New York: Basic Books; 2013.
  • Kato T. Epigenomics in psychiatry. Neuropsychobiology. 2009;60:2–4.
  • Mohammad HP, Baylin SB. Linking cell signaling and the epigenetic machinery. Nat Biotechnol. 2010;28:1033–1038.
  • Gallegos DA, Chan U, Chen LF, et al. Chromatin regulation of neuronal maturation and plasticity. Trends Neurosci. 2018;41:311–324.
  • Marasca F, Bodega B, Orlando V. How polycomb-mediated cell memory deals with a changing environment: variations in PcG complexes and proteins assortment convey plasticity to epigenetic regulation as a response to environment. BioEssays. 2018;40:e1700137.
  • Ho L, Crabtree GR. Chromatin remodelling during development. Nature. 2010;463:474–484.
  • Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature. 2010;463:485–492.
  • Scita G, Di Fiore PP. The endocytic matrix. Nature. 2010;463:464–473.
  • Borrelli E, Nestler EJ, Allis CD, et al. Decoding the epigenetic language of neuronal plasticity. Neuron. 2008;60:961–974.
  • Patalano S, Hore TA, Reik W, et al. Shifting behaviour: epigenetic reprogramming in eusocial insects. Curr Opin Cell Biol. 2012;24:367–373.
  • Popper K. All life is problem solving. London, UK: Routledge, Taylor and Francis Group; 2001.
  • Niemann H-J. Karl Popper and the two new secrets of life. Tübingen: Mohr Siebeck; 2014.
  • Baluška F, Witzany G. Life is more than a computer running DNA software. World J Biol Chem. 2014;5:275–278.
  • Witzany G. The biocommunication method: on the road to an integrative biology. Commun Integr Biol. 2016;9:e1164374.
  • De Loof A. From Darwin’s on the origin of species by means of natural selection to the evolution of life with communication activity as its very essence and driving force (= mega-evolution). Life Excit Biol. 2015;3:153–189.
  • De Loof A. The Evolution of” Life”: a metadarwinian integrative approach. Commun Integr Biol. 2017;3:e1301335.
  • Hellingwerf KJ. Bacterial observations: a rudimentary form of intelligence? Trends Microbiol. 2005;13:152–158.
  • Van Duijn M, Keijzer F, Franken D. Principles of minimal cognition: casting cognition as sensorimotor coordination. Adapt Behav. 2006;14:157–170.
  • Ueda T. An intelligent slime mold: a self-organizing system of cell shape and information. Lect Notes Complex Syst. 2005;3:221–253.
  • Ball P. Cellular memory hints at the origins of intelligence. Nature. 2008;451:385.
  • Dussutour A, Latty T, Beekman M, et al. Amoeboid organism solves complex nutritional challenges. Proc Natl Acad Sci USA. 2010;107:4607–4611.
  • Calvo Garzón F, Keijzer F. Cognition in plants. In: Baluška F, ed. Plant-environment interactions from behavioural perspective. Berlin - Heidelberg - New York: Springer Verlag; 2009. p. 247–266.
  • Trewavas A. Aspects of plant intelligence. Ann Bot. 2003;92:1–20.
  • Trewavas A. Plant intelligence. Naturwissenschaften. 2005;92:401–413.
  • Trewavas A. Intelligence, cognition, and language of green plants. Front Psychol. 2016;7:588.
  • Calvo P, Sahi VP, Trewavas A. Are plants sentient? Plant Cell Environ. 2017;40:2858–2869.
  • Mian IS, Rose C. Communication theory and multicellular biology. Integr Biol. 2011;3:350–367.
  • Nicolson GL. The Fluid-Mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim Biophys Acta. 2014;1838:1451–1466.
  • Goñi FM. The basic structure and dynamics of cell membranes: an update of the Singer-Nicolson model. Biochim Biophys Acta. 2014;1838:1467–1476.
  • Kaiser H-J, Lingwood D, Levental I, et al. Order of lipid phases in model and plasma membranes. Proc Natl Acad Sci USA. 2009;106:16645–16650.
  • Sych T, Mély Y, Römer W. Lipid self-assembly and lectin-induced reorganization of the plasma membrane. Philos Trans R Soc Lond B Biol Sci. 2018;373:1747.
  • Honigmann A, Pralle A. Compartmentalization of the cell membrane. J Mol Biol. 2016;428:4739–4748.
  • Krapf D. Compartmentalization of the plasma membrane. Curr Opin Cell Biol. 2018;53:15–21.
  • Sadegh S, Higgins JL, Mannion PC, et al. The plasma membrane is compartmentalized by a self-similar cortical actin meshwork. Phys Rev X. 2017;7:011031.
  • Lane N, Martin WF. The origin of membrane bioenergetics. Cell. 2012;151:1406–1416.
  • Deamer D. The role of lipid membranes in life’s origin. Life. 2017;7:5.
  • Lane N. Proton gradients and the origin of life. BioEssays. 2017;39:6.
  • Moreira D, López-García P. Ten reasons to exclude viruses from the tree of life. Nat Rev Microbiol. 2009;7:306–311.
  • Claverie J-M. Viruses take center stage in cellular evolution. Genome Biol. 2006;7:110.
  • Hegde NR, Maddur MS, Kaveri SV, et al. Reasons to include viruses in the tree of life. Nat Rev Microbiol. 2009;7:615.
  • Forterre P. Defining life: the virus viewpoint. Orig Life Evol Biosph. 2010;40:151–160.
  • Ruiz-Saenz J, Rodas JD. Viruses, virophages, and their living nature. Acta Virol. 2010;54:85–90.
  • Annila A, Baverstock K. Genes without prominence: a reappraisal of the foundations of biology. J R Soc Interface. 2014;11:20131017.
  • Miller WB Jr, Torday JS. Four domains: the fundamental unicell and post-Darwinian cognition-based evolution. Progr Biophys Mol Biol. 2018. In press.
  • Parkinson C, Kleinbaum AM, Wheatley T. Similar neural responses predict friendship. Nat Commun. 2018;9:332.
  • Dunbar RIM. The anatomy of friendship. Trends Cogn Sci. 2018;22:32–51.
  • Panksepp J, Panksepp JB. Toward a cross-species understanding of empathy. Trends Neurosci. 2013;36:489–496.
  • Peil KT. Emotion: the self-regulatory sense. Glob Adv Health Med. 2014;3:80–108.
  • Blackmore S. Memes and the evolution of religion: we need memetics, too. Behav Brain Sci. 2016;39:e5.
  • Schaden G, Patin C. Semiotic systems with duality of patterning and the issue of cultural replicators. Hist Philos Life Sci. 2017;40:4.
  • Fortier J, Besnard J, Allain P. Theory of mind, empathy and emotion perception in cortical and subcortical neurodegenerative diseases. Rev Neurol (Paris). 2018;174:237–246.
  • Wittmann MK, Lockwood PL, Rushworth MFS. Neural mechanisms of social cognition in primates. Annu Rev Neurosci. 2018;41. In press.
  • Westby CE. Social neuroscience and theory of mind. Folia Phoniatr Logop. 2014;66:7–17.
  • Wang Y, Olson IR. The original social network: white matter and social cognition. Trends Cogn Sci. 2018;22:504–516.
  • Kováč L. Science, an essential part of culture. EMBO Rep. 2006;7:128–132.
  • Kováč L. Finitics - a plea for biological realism. EMBO Rep. 2008;9:703–708.
  • Laland K, Odling-Smee J, Myles S. How culture shaped the human genome: bringing genetics and the human sciences together. Nat Rev Genet. 2010;11:137–148.
  • Pagel M. Human language as a culturally transmitted replicator. Nat Rev Genet. 2009;10:405–415.
  • Hayek FA. The sensory order. An inquiry into the foundations of the theoretical psychology. Chicago (IL): University of Chicago Press; 1952.
  • Vuorre M. On time, causation and the sense of agency. J Consc Stud. 2017;3-4:203–215.
  • Olivotto M, Arcangeli A, Carlà M, et al. Electric fields at the plasma membrane level: a neglected element in the mechanisms of cell signalling. BioEssays. 1996;18:495–504.
  • Veech RL, Kashiwaya Y, Gates DN, et al. The energetics of ion distribution: the origin of the resting electric potential of cells. IUBMB Life. 2002;54:241–252.
  • Scott BH. Electric fields in plants. Ann Rev Plant Biol. 1967;18:409–418.
  • Weisenseel MH, Nuccitelli R, Jaffe LF. Large electrical currents traverse growing pollen tubes. J Cell Biol. 1975;66:556–567.
  • Weisenseel MH, Dorn A, Jaffe LF. Natural H+ currents traverse growing roots and root hairs of barley (Hordeum vulgare L.). Plant Physiol. 1979;64:512–518.
  • Iwabuchi A, Yano M, Shimizu H. Development of extracellular electric pattern around Lepidium roots: its possible role in root growth and gravitropism. Protoplasma. 1989;148:94–100.
  • Miller AL, Gow NA. Correlation between root-generated ionic currents, pH, fusicoccin, indoleacetic acid, and growth of the primary root of Zea mays. Plant Physiol. 1989;89:1198–1206.
  • Collings DA, White RG, Overall RL. Ionic current changes associated with the gravity-induced bending response in roots of Zea mays L. Plant Physiol. 1992;100:1417–1426.
  • Baluška F, Wan Y-L. Physical control over endocytosis. In: Šamaj J, ed. Endocytosis in plants. Berlin, Germany: Springer-Verlag; 2012. p. 123–149.
  • Baluška F, Mancuso S. Ion channels in plants: from bioelectricity, via signaling, to behavioral actions. Plant Signal Behav. 2013;8:e23009.
  • Zhou S-A, Uesaka M. Bioelectrodynamics in living organisms. Int J Engin Sc. 2006;44:67–92.
  • Levin M. Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration. J Physiol. 2014;592:2295–2305.
  • Levin M, Pezzulo G, Finkelstein JM. Endogenous bioelectric signaling networks: exploiting voltage gradients for cntrol of growth and form. Annu Rev Biomed Eng. 2017;19:353–387.
  • Tseng A, Levin M. Cracking the bioelectric code: probing endogenous ionic controls of pattern formation. Commun Integr Biol. 2013;6:e22595.
  • Levin M, Martyniuk CJ. The bioelectric code: an ancient computational medium for dynamic control of growth and form. Biosystems. 2018;164:76–93.
  • Fröhlich F, McCormick DA. Endogenous electric fields may guide neocortical network activity. Neuron. 2010;67:129–143.
  • Anastassiou CA, Perin R, Markram H, et al. Ephaptic coupling of cortical neurons. Nat Neurosci. 2011;14:217–223.
  • Anastassiou CA, Koch C. Ephaptic coupling to endogenous electric field activity: why bother? Curr Opin Neurobiol. 2015;31:95–103.
  • Goldwyn JH1, Rinzel J. Neuronal coupling by endogenous electric fields: cable theory and applications to coincidence detector neurons in the auditory brain stem. J Neurophysiol. 2016;115:2033–2051.
  • Martinez-Banaclocha M. Ephaptic coupling of cortical neurons: possible contribution of astroglial magnetic fields? Neuroscience. 2018;370:37–45.
  • Nunez PL, Srinivasan R. Electric fields of the brain: the neurophysics of EEG. Second ed. Oxford, UK: Oxford University Press; 2006.
  • Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents -EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 2012;13:407–420.
  • Fels D. The double-aspect of life. Biol. 2018;7:28.
  • Mouritsen H. Magnetoreception in birds and its use for long-distance migration. In: Sturkie’s avian physiology. Sixth ed. 2015. Associated Press; p. 113–133. DOI::10.1007/978-3-642-10,769-6_20.
  • Wiltschko R, Thalau P, Gehring D, et al. Magnetoreception in birds: the effect of radio-frequency fields. J R Soc Interface. 2015;12:103.
  • Wiltschko R, Ahmad M, Nießner C, et al. Light-dependent magnetoreception in birds: the crucial step occurs in the dark. J R Soc Interface. 2015;13:2015.
  • Pinzon-Rodriguez A, Muheim R. Zebra finches have a light-dependent magnetic compass similar to migratory birds. J Exp Biol. 2017;220:1202–1209.
  • Günther A, Einwich A, Sjulstok E, et al. Double-cone localization and seasonal expression pattern suggest a role in magnetoreception for European robin cryptochrome 4. Curr Biol. 2018;28:211–223.
  • Catania KC. Electric eels concentrate their electric field to induce involuntary fatigue instruggling prey. Curr Biol. 2015;25:2889–2898.
  • Clarke D, Whitney H, Sutton G, et al. Detection and learning of floral electric fields by bumblebees. Science. 2013;340:66–69.
  • Clarke D, Morley E, Robert D. The bee, the flower, and the electric field: electric ecology and aerial electroreception. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017;203:737–748.
  • Rohan M, Parow A, Stoll AL, et al. Low-field magnetic stimulation in bipolar depression using an MRI-based stimulator. Am J Psych. 2004;161:93–98.
  • Rohan ML, Yamamoto RT, Ravichandran CT, et al. Rapid mood-elevating effects of low field magnetic stimulation in depression. Biol Psych. 2014;76:186–193.
  • Fields C, Levin M. Multiscale memory and bioelectric error correction in the cytoplasm-cytoskeleton-membrane system. Wiley Interdiscip Rev Syst Biol Med. 2018;10:e1410.