956
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Cooling effect of fungal stromata in the Dactylis-Epichloë-Botanophila symbiosis

, , & ORCID Icon
Pages 151-157 | Received 18 May 2021, Accepted 01 Jun 2021, Published online: 27 Jun 2021

References

  • Cheplick GP, Faeth SH. Ecology and evolution of the grass-endophyte symbiosis. USA: Oxford University Press; 2009.
  • Saikkonen K, Wäli P, Helander M, et al. Evolution of endophyte-plant symbioses. Trends Plant Sci. 2004;9:275–280.
  • Tanaka A, Christensen MJ, Takemoto D, et al. Reactive oxygen species play a role in regulating a fungus–perennial ryegrass mutualistic interaction. Plant Cell. 2006;18:1052–1066.
  • Kohlmeyer J, Kohlmeyer E. Distribution of Epichloë typhina (Ascomycetes) and its parasitic fly. Mycologia. 1974;66:77–86.
  • Bultman TL, Leuchtmann A. The biology of the Epichloë–Botanophila interaction: an intriguing association between fungi and insects. Fungal Biol Rev. 2008;22:131–138.
  • Steinebrunner F, Twele R, Francke W, et al. Role of odour compounds in the attraction of gamete vectors in endophytic Epichloë fungi. New Phytol. 2008;178:401–411.
  • Alderman SC, Pfender WF, Welty RE, et al. First report of choke caused by Epichloë typhina on orchardgrass in Oregon. Plant Dis. 1997;81:1335–1339.
  • Li CJ, Wang ZF, Chen N, et al. First report of choke disease caused by Epichloë typhina on Orchardgrass (Dactylis glomerata) in China. Plant Dis. 2009;93:673.
  • Górzyńska K, Lembicz M, Olszanowski Z, et al. An unusual Botanophila–Epichloë association in a population of orchardgrass (Dactylis glomerata) in Poland. J Nat Hist. 2010;44:2817–2824.
  • Rozpądek P, Wężowicz K, Nosek M, et al. The fungal endophyte Epichloë typhina improves photosynthesis efficiency of its host orchard grass (Dactylis glomerata). Planta. 2015;242:1025–1035.
  • Lembicz M, Górzyńska K, Olejniczak P, et al. Geographical distribution and effects of choke disease caused by Epichloë typhina in populations of the grass Puccinellia distans in Poland. Sydowia. 2011;63:35–48.
  • Hoveland CS. Importance and economic significance of the Acremonium endophytes to performance of animals and grass plant. Agric Ecosyst Environ. 1993;44:3–12.
  • Kauppinen M, Saikkonen K, Helander M, et al. Epichloë grass endophytes in sustainable agriculture. Nat Plants. 2016;2:15224.
  • Brem D, Leuchtmann A. Molecular evidence for host-adapted races of the fungal endophyte Epichloë bromicola after presumed host shifts. Evolution. 2003;57:37–51.
  • Leuchtmann A. Botanophila flies on Epichloë host species in Europe and North America: no evidence for co-evolution. Entomol Exp Appl. 2007;123:13–23.
  • Simon C, Frati F, Beckenbach A, et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction. Ann Entomol Soc Am. 1994;87:651–701.
  • Lembicz M, Górzyńska K, Olszanowski Z, et al. The occurrence and preference of Botanophila flies (Diptera: anthomyiidae) for particular species of Epichloë fungi infecting wild grasses. Eur J Entomol. 2013;110:129–134.
  • Górzyńska K, Olszanowski Z, Leuchtmann A, et al. Oviposition preference of Botanophila Flies (Diptera: anthomyiidae) towards stroma size of Epichloë (Hypocreales: clavicipitaceae) hosts. Ann Entomol Soc Am. 2014;107:532–538.
  • Coplen TB, Brand WA, Gehre M, et al. New guidelines for δ13C measurements. Anal Chem. 2006;78:2439–2441.
  • Lin PHMD, Echeverria AMD, Poi MJMD, et al. Infrared thermography in the diagnosis and management of vasculitis. J Vasc Surg Cases Innov Tech. 2017;3:112–114.
  • Merlot S, Mustilli A-C, Genty B, et al. Use of infrared thermal imaging to isolate Arabidopsis mutants defective in stomatal regulation. Plant J. 2002;30:601–609.
  • Beerling DJ, Osborne CP, Chaloner WG. Do drought-hardened plants suffer from fever? Trends Plant Sci. 2001;6:507–508.
  • Hedrich R, Steinmeyer R. Do drought-hardened plants suffer from fever? Trends Plant Sci. 2001;6:506.
  • Jones HG. Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ. 1999;22:1043–1055.
  • Nobel PS. Physicochemical and environmental plant physiology. 2 ed ed. San Diego, CA: Academic Press; 1999.
  • Berveiller D, Damesin C. Carbon assimilation by tree stems: potential involvement of phosphoenolpyruvate carboxylase. Trees-Struct Funct. 2008;22:149–157.
  • Nosek M, Rozpądek P, Kornaś A, et al. Veinal-mesophyll interaction under biotic stress. t` Plant Physiol. 2015;185:52–56.
  • Miszalski Z, Skoczowski A, Silina E, et al. Photosynthetic activity of vascular bundles in Plantago media leaves. J Plant Physiol. 2016;204:36–43.
  • Ceusters J, Borland AM, Godts C, et al. Crassulacean acid metabolism under severe light limitation; a matter of plasticity in the shadows? J Exp Bot. 2011;62:283–391.
  • Kuźniak E, Kornas A, Gabara B, et al. Interaction of Botrytis cinerea with the intermediate C3-CAM plant Mesembryanthemum crystallinum. Environ Exp Bot. 2010;69:137–147.
  • Kohlmeyer J, Kohlmeyer E. Zum Verhalten von Phorbia phrenione (Séguy) sowie Mitteilungen über Zucht, Neufunde und Feinde der Fliege (Diptera: anthomyiidae). Beitr Entomol. 1960;10:388–401.