1,152
Views
1
CrossRef citations to date
0
Altmetric
Short Communication

The search for molecular mimicry in proteins carried by extracellular vesicles secreted by cells infected with Plasmodium falciparum

ORCID Icon, , & ORCID Icon
Pages 212-220 | Received 27 Apr 2021, Accepted 20 Aug 2021, Published online: 08 Sep 2021

References

  • World Health Organization. World malaria report 2020: 20 years of global progress and challenges [Internet]. Geneva: World Health Organization; 2020 [cited 2021 Jul 7]. Available from: https://www.who.int/publications-detail-redirect/9789240015791
  • Milner DA. Malaria pathogenesis. Cold Spring Harb Perspect Med; 2018. p. 8. New York-United States of America.
  • Hviid L, Jensen ATR. PfEMP1 - a parasite protein family of key importance in plasmodium falciparum malaria immunity and pathogenesis. Adv Parasitol. 2015;88:51–84.
  • Mantel P-Y, Hoang AN, Goldowitz I, et al. Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host Microbe. 2013;13:521–534.
  • Wang J, Wang Y, Tang L, et al. Extracellular vesicles in mycobacterial infections: their potential as molecule transfer vectors. Front Immunol. Internet] 2019 [cited 2020 Jun 22]; 10. Available from: https://www.frontiersin.org/articles/10.3389/fimmu.2019.01929/full
  • de Gonçalves DS, da Ferreira MS, Guimarães AJ. Extracellular vesicles from the protozoa acanthamoeba castellanii: their role in pathogenesis, environmental adaptation and potential applications. Bioengineering (Basel). 2019;6(1), 13.
  • Maas SLN, Breakefield XO, Weaver AM. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 2017;27:172–188.
  • Regev-Rudzki N, Wilson DW, Carvalho TG, et al. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell. 2013;153:1120–1133.
  • Correa R, Caballero Z, De León LF, et al. Extracellular vesicles could carry an evolutionary footprint in interkingdom communication. Front Cell Infect Microbiol. 2020;10:76.
  • Rinaldi M, Perricone R, Perricone C, et al. Antimyocardial autoantibodies (AMCA) [Internet]. In: Autoantibodies. Elsevier; 2014 [cited 2020 Jul 13]. p. 349–355. Elsevier. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780444563781000423
  • Hall R. Molecular mimicry. In: Baker JR, Muller R, Rollinson D, editors. Advances in parasitology. United States of America, Academic Press; 1994. p. 314.
  • Cunningham MW. Molecular mimicry [Internet]. In: John Wiley & Sons, Ltd, editor. Encyclopedia of Life Sciences. Chichester, UK: John Wiley & Sons, Ltd; 2009 [cited 2020 Jul 14]. p. a0000958.pub2. DOI:https://doi.org/10.1002/9780470015902.a0000958.pub2
  • Poulet A, Bou Ali H, Savini H, et al. Post-malaria neurological syndrome: imported case series and literature review to unscramble the auto-immune hypothesis. Travel Med Infect Dis. 2019;29:16–20.
  • Sheikh KA, Ho TW, Nachamkin I, et al. Molecular mimicry in Guillain-Barré syndrome. Ann N Y Acad Sci. 1998;845:307–321.
  • Jiang N, Yu S, Yang N, et al. Characterization of the catalytic subunits of the RNA exosome-like complex in plasmodium falciparum. J Eukaryot Microbiol. 2018;65:843–853.
  • Tiberti N, Latham SL, Bush S, et al. Exploring experimental cerebral malaria pathogenesis through the characterisation of host-derived plasma microparticle protein content. Sci Rep. 2016;6:37871.
  • Antwi-Baffour S, Adjei JK, Agyemang-Yeboah F, et al. Proteomic analysis of microparticles isolated from malaria positive blood samples. Proteome Sci. 2017;15:5.
  • Sampaio NG, Emery SJ, Garnham AL, et al. Extracellular vesicles from early stage Plasmodium falciparum -infected red blood cells contain PfEMP1 and induce transcriptional changes in human monocytes. Cell Microbiol. 2018;20:e12822.
  • Abdi A, Yu L, Goulding D, et al. Proteomic analysis of extracellular vesicles from a Plasmodium falciparum Kenyan clinical isolate defines a core parasite secretome. Wellcome Open Res. 2017;2:50.
  • Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402.
  • Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–780.
  • Hunter S, Jones P, Mitchell A, et al. InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res. 2012;40:D306–12.
  • Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res. 2000;28:235–242.
  • Kelley LA, Mezulis S, Yates CM, et al. The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc. 2015;10:845–858.
  • Mooers BHM. Shortcuts for faster image creation in PyMOL. Protein Sci. 2020;29:268–276.
  • Using HL. Dali for protein structure comparison [Internet]. In: Gáspári Z, editor. Structural bioinformatics. New York, NY: Springer US; 2020 [cited 2020 Nov 19]. p. 29–42. Available from: http://link.springer.com/10.1007/978-1-0716-0270-6_3
  • Kumar S, Stecher G, Li M, et al. Molecular Evolutionary Genetics Analysis Across Computing Platforms. Mol Biol Evol. 2018;35:1547–1549.
  • Lasso G, Honig B, Shapira SD. A sweep of earth’s virome reveals host-guided viral protein structural mimicry and points to determinants of human disease. Cell Syst. 2021;12:82–91.e3.
  • Elde NC, Malik HS. The evolutionary conundrum of pathogen mimicry. Nature Rev Microbiol. 2009;7:787–797.
  • Armijos-Jaramillo V, Espinosa N, Vizcaíno K, et al. A novel in silico method for the molecular mimicry detection finds a formin with the potential to manipulate maize cell cytoskeleton. Mol Plant Microbe Interact. 2021;MPMI-11-20-0332. DOI:https://doi.org/10.1094/MPMI-11-20-0332-R
  • Das S, Lemgruber L, Tay CL, et al. Multiple essential functions of Plasmodium falciparum actin-1 during malaria blood-stage development. BMC Biol. Internet] 2017 [cited 2020 Dec 11]; 15. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5557482/
  • Pollard TD, Cooper JA. Actin, a Central Player in Cell Shape and Movement. Science. 2009;326:1208–1212.
  • Osakabe A, Takahashi Y, Murakami H, et al. DNA binding properties of the actin-related protein Arp8 and its role in DNA repair. PLoS One. Internet] 2014 [cited 2021 Apr 10]; 9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191963/
  • Sirover MA. The role of posttranslational modification in moonlighting glyceraldehyde-3-phosphate dehydrogenase structure and function. Amino Acids. 2021;53:507–515.
  • Jeffery CJ. Protein moonlighting: what is it, and why is it important? Philos Trans R Soc Lond B Biol Sci. 2018;373(1738).
  • Bosch J, Buscaglia CA, Krumm B, et al. Aldolase provides an unusual binding site for thrombospondin-related anonymous protein in the invasion machinery of the malaria parasite. Proc Natl Acad Sci U S A. 2007;104:7015–7020.
  • Petit FM, Serres C, Bourgeon F, et al. Identification of sperm head proteins involved in zona pellucida binding. Hum Reprod. 2013;28:852–865.
  • Zuehlke AD, Moses MA, Neckers L. Heat shock protein 90: its inhibition and function. Philos Trans R Soc Lond B Biol Sci. 2018;373(1738).
  • de Koning-Ward TF, Dixon MWA, Tilley L, et al. Plasmodium species: master renovators of their host cells. Nature Rev Microbiol. 2016;14:494–507.
  • Seraphim TV, Chakafana G, Shonhai A, et al. Plasmodium falciparum R2TP complex: driver of parasite Hsp90 function. Biophys Rev. 2019;11:1007–1015.
  • Saha B, Momen-Heravi F, Furi I, et al. Extracellular vesicles from mice with alcoholic liver disease carry a distinct protein cargo and induce macrophage activation through heat shock protein 90. Hepatology. 2018;67:1986–2000.
  • Shiina N, Gotoh Y, Kubomura N, et al. Microtubule severing by elongation factor 1 alpha. Science. 1994;266:282–285.
  • Demarta-Gatsi C, Rivkin A, Di Bartolo V, et al. Histamine releasing factor and elongation factor 1 alpha secreted via malaria parasites extracellular vesicles promote immune evasion by inhibiting specific T cell responses. Cell Microbiol. 2019; 21(7):e13021.
  • Nandan D, Tran T, Trinh E, et al. Identification of leishmania fructose-1,6-bisphosphate aldolase as a novel activator of host macrophage Src homology 2 domain containing protein tyrosine phosphatase SHP-1. Biochem Biophys Res Commun. 2007;364:601–607.
  • Nandan D, Yi T, Lopez M, et al. Leishmania EF-1alpha activates the Src homology 2 domain containing tyrosine phosphatase SHP-1 leading to macrophage deactivation. J Biol Chem. 2002;277:50190–50197.
  • Tanaka K. The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85:12–36.
  • Obsilova V, The OT. 14-3-3 proteins as important allosteric regulators of protein kinases. Int J Mol Sci. 2020;21:E8824.
  • Jain R, Dey P, Gupta S, et al. Molecular dynamics simulations and biochemical characterization of Pf14-3-3 and PfCDPK1 interaction towards its role in growth of human malaria parasite. Biochem J. 2020;477:2153–2177.
  • Wan F, Anderson DE, Barnitz RA, et al. Ribosomal protein S3: a KH domain subunit in NF-kappaB complexes that mediates selective gene regulation. Cell. 2007;131:927–939.
  • Graifer D, Malygin A, Zharkov DO, et al. Eukaryotic ribosomal protein S3: a constituent of translational machinery and an extraribosomal player in various cellular processes. Biochimie. 2014;99:8–18.