842
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Insights regarding sirtuin-dependent gene regulation during white koji production

ORCID Icon &
Pages 92-95 | Received 18 Feb 2022, Accepted 07 Mar 2022, Published online: 16 Mar 2022

References

  • Yamashita H. Koji starter and koji world in Japan. J Fungi (Basel). 2021;7:569.
  • Hayashi K, Kajiwara Y, Futagami T, et al. Making traditional Japanese distilled liquor, shochu and awamori, and the contribution of white and black koji fungi. J Fungi (Basel). 2021;7:517.
  • Omori T, Takeshima N, Shimoda M. Formation of acid-labile α-amylase during barley-koji production. J Ferment Bioeng. 1994;78:27–30.
  • Futagami T, Mori K, Wada S, et al. Transcriptomic analysis of temperature responses of Aspergillus kawachii during barley koji production. Appl Environ Microbiol. 2015;81:1353–1363.
  • Miyamoto A, Kadooka C, Mori K, et al. Sirtuin SirD is involved in alpha-amylase activity and citric acid production in Aspergillus luchuensis mut. kawachii during a solid-state fermentation process. J Biosci Bioeng. 2020;129:454–466.
  • Imai S, Armstrong CM, Kaeberlein M, et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403:795–800.
  • Landry J, Sutton A, Tafrov ST, et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A. 2000;97:5807–5811.
  • Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun. 2000;273:793–798.
  • Shimizu M, Masuo S, Fujita T, et al. Hydrolase controls cellular NAD, sirtuin, and secondary metabolites. Mol Cell Biol. 2012;32:3743–3755.
  • Kawauchi M, Nishiura M, Iwashita K, et al. Fungus-specific sirtuin HstD coordinates secondary metabolism and development through control of LaeA. Eukaryot Cell. 2013;12:1087–1096.
  • Kawauchi M, Iwashita K. Functional analysis of histone deacetylase and its role in stress response, drug resistance and solid-state cultivation in Aspergillus oryzae. J Biosci Bioeng. 2014;118:172–176.
  • Itoh E, Odakura R, Oinuma KI, et al. Sirtuin E is a fungal global transcriptional regulator that determines the transition from the primary growth to the stationary phase. J Biol Chem. 2017;292:11043–11054.
  • Itoh E, Shigemoto R, Oinuma KI, et al. Sirtuin A regulates secondary metabolite production by Aspergillus nidulans. J Gen Appl Microbiol. 2017;63:228–235.
  • Belenky P, Racette FG, Bogan KL, et al. Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell. 2007;129(3):473–484.
  • Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science. 2000;289:2126–2128.
  • Shimizu M. NAD+/NADH homeostasis affects metabolic adaptation to hypoxia and secondary metabolite production in filamentous fungi. Biosci Biotechnol Biochem. 2018;82:216–224.
  • Shimizu M, Takaya N. Nudix hydrolase controls nucleotides and glycolytic mechanisms in hypoxic Aspergillus nidulans. Biosci Biotechnol Biochem. 2013;77:1888–1893.