1,135
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Computational and cellular exploration of the protein-protein interaction between Vibrio fischeri STAS domain protein SypA and serine kinase SypE

ORCID Icon & ORCID Icon
Article: 2203626 | Received 28 Feb 2023, Accepted 13 Apr 2023, Published online: 20 Apr 2023

References

  • Nooren IMA, Thornton JM. Diversity of protein–protein interactions. Embo J. 2003;22:3486–15.
  • Moy BE, Seshu J. STAS domain only proteins in bacterial gene regulation. Front Cell Infect Microbiol. 2021;11:564.
  • Aravind L, Koonin EV. The STAS domain — a link between anion transporters and antisigma-factor antagonists. Curr Biol. 2000;10:R53–55.
  • Losick R, Pero J. Cascades of sigma factors. Cell. 1981;25:582–584.
  • Campbell EA, Westblade LF, Darst SA. Regulation of bacterial RNA polymerase sigma factor activity: a structural perspective. Curr Opin Microbiol. 2008;11:121–127.
  • Marles-Wright J, Grant T, Delumeau O, et al. Molecular architecture of the “stressosome. A Signal Integration and Transduction Hub. 2008;322:6.
  • Miksys A, Fu L, Madej MG, et al. Molecular insights into intra-complex signal transmission during stressosome activation. Commun Biol. 2022;5:1–12.
  • Kovacs H, Comfort D, Lord M, et al. Solution structure of SpoIIAA, a phosphorylatable component of the system that regulates transcription factor sigmaF of Bacillus subtilis. Proc Natl Acad Sci U S A. 1998;95:5067–5071.
  • Masuda S, Murakami KS, Wang S, et al. Crystal structures of the ADP and ATP bound forms of the Bacillus anti-sigma factor SpoIIAB in complex with the anti-anti-sigma SpoIIAA. J Mol Biol. 2004;340:941–956.
  • Garsin DA, Paskowitz DM, Duncan L, et al. Evidence for common sites of contact between the antisigma factor SpoIIAB and its partners SpoIIAA and the developmental transcription factor sigmaF in Bacillus subtilis. J Mol Biol. 1998;284:557–568.
  • Seavers PR, Lewis RJ, Brannigan JA, et al. Structure of the Bacillus cell fate determinant SpoIIAA in phosphorylated and unphosphorylated forms. Struct. 1993;9(2001):605–614.
  • Lee CS, Clarkson J, Shu JC, et al. Bacillus subtilis mutations that alter the pathway of phosphorylation of the anti-anti-sigmaF factor SpoIIAA lead to a Spo- phenotype. Mol Microbiol. 2001;40:9–19.
  • Diederich B, Wilkinson JF, Magnin T, et al. Role of interactions between SpoIIAA and SpoIIAB in regulating cell-specific transcription factor sigma F of Bacillus subtilis. Genes Dev. 1994;8:2653–2663.
  • Schmidt R, Margolis P, Duncan L, et al. Control of developmental transcription factor sigma F by sporulation regulatory proteins SpoIIAA and SpoIIAB in Bacillus subtilis. Proc Natl Acad Sci U S A. 1990;87:9221–9225.
  • Voelker U, Voelker A, Maul B, et al. Separate mechanisms activate sigma B of Bacillus subtilis in response to environmental and metabolic stresses. J Bacteriol. 1995;177:3771–3780.
  • Voelker U, Voelker A, Haldenwang WG. Reactivation of the Bacillus subtilis anti-sigma B antagonist, RsbV, by stress- or starvation-induced phosphatase activities. J Bacteriol. 1996;178:5456–5463.
  • Kozak NA, Mattoo S, Foreman-Wykert AK, et al. Interactions between partner switcher orthologs BtrW and BtrV regulate type III secretion in Bordetella. J Bacteriol. 2005;187:5665–5676.
  • Mercer RG, Lang AS. Identification of a predicted partner-switching system that affects production of the gene transfer agent RcGTA and stationary phase viability in Rhodobacter capsulatus. BMC Microbiol. 2014;14:71.
  • Riley KW, Gonzalez A, Risser DD. A partner-switching regulatory system controls hormogonium development in the filamentous cyanobacterium Nostoc punctiforme. Mol Microbiol. 2018;109:555–569.
  • Morris AR, Visick KL. The response regulator SypE controls biofilm formation and colonization through phosphorylation of the syp-encoded regulator SypA in Vibrio fischeri. Mol Microbiol. 2013;87:509–525.
  • Morris AR, Visick KL. Control of biofilm formation and colonization in Vibrio fischeri: a role for partner switching? Environ Microbiol. 2010;12:2051–2059.
  • Yip ES, Grublesky BT, Hussa EA, et al. A novel, conserved cluster of genes promotes symbiotic colonization and σ54-dependent biofilm formation by Vibrio fischeri. Mol Microbiol. 2005;57:1485–1498.
  • Yip ES, Geszvain K, DeLoney-Marino CR, et al. The symbiosis regulator rscS controls the syp gene locus, biofilm formation and symbiotic aggregation by Vibrio fischeri. Mol Microbiol. 2006;62:1586–1600.
  • Shibata S, Yip ES, Quirke KP, et al. Roles of the structural symbiosis polysaccharide (syp) genes in host colonization, biofilm formation, and polysaccharide biosynthesis in Vibrio fischeri. J Bacteriol. 2012;194:6736–6747.
  • Hussa EA, Darnell CL, Visick KL. RscS functions upstream of SypG to control the syp locus and biofilm formation in Vibrio fischeri. J Bacteriol. 2008;190:4576–4583.
  • Morris AR, Darnell CL, Visick KL. Inactivation of a novel response regulator is necessary for biofilm formation and host colonization by Vibrio fischeri. Mol Microbiol. 2011;82:114–130.
  • Morris AR, Visick KL, Beloin C. Inhibition of SypG-induced biofilms and host colonization by the negative regulator SypE in Vibrio fischeri. PLoS ONE. 2013;8:e60076.
  • Thompson CM, Marsden AE, Tischler AH, et al. Vibrio fischeri biofilm formation prevented by a trio of regulators. Appl Environ Microbiol 2018;84:e01257–18. DOI:10.1128/AEM.01257-18
  • Yildiz FH, Visick KL. Vibrio biofilms: so much the same yet so different. Trends Microbiol. 2009;17:109–118.
  • Bateman A, Martin M-J, Orchard S. The UniProt Consortium, UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Res. 2023;51:D523–531.
  • Baek M, DiMaio F, Anishchenko I, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science. 2021;373:871–876.
  • Mirdita M, Schütze K, Moriwaki Y, et al. ColabFold: making protein folding accessible to all. Nat Methods. 2022;19:679–682.
  • Williams CJ, Headd JJ, Moriarty NW, et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci Publ Protein Soc. 2018;27:293–315.
  • Balbin C, Bliven S, Pymol-color-alphafold, (2022). https://github.com/cbalbin-bio/pymol-color-alphafold
  • Boettcher KJ, Ruby EG. Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes. J Bacteriol. 1990;172:3701–3706.
  • Le Roux F, Binesse J, Saulnier D, et al. Construction of a Vibrio splendidus mutant lacking the metalloprotease gene vsm by use of a novel counterselectable suicide vector. Appl Environ Microbiol. 2007;73:777–784.
  • Graf J, Dunlap PV, Ruby EG. Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J Bacteriol. 1994;176:6986–6991.
  • Visick KL, Hodge-Hanson KM, Tischler AH, et al. Tools for rapid genetic engineering of Vibrio fischeri. Appl Environ Microbiol 2018;84:e00850–18. DOI:10.1128/AEM.00850-18
  • Christensen DG, Tepavčević J, Visick KL. Genetic manipulation of Vibrio fischeri. Curr Protoc Microbiol. 2020;59:e115.
  • Cohen JJ, Eichinger SJ, Witte DA, et al. Control of competence in Vibrio fischeri. Appl Environ Microbiol 2021;87:e01962–20. DOI:10.1128/AEM.01962-20
  • Brooks JF, Gyllborg MC, Cronin DC, et al. Global discovery of colonization determinants in the squid symbiont Vibrio fischeri. Proc Natl Acad Sci U S A. 2014;111:17284–17289.
  • Stabb EV, Ruby EG. RP4-based plasmids for conjugation between Escherichia coli and members of the vibrionaceae. In Methods Enzymol. Academic Press; 2002. pp. 413–426. DOI:10.1016/S0076-6879(02)58106-4
  • Ho SN, Hunt HD, Horton RM, et al. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989;77:51–59.
  • Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;1–11. DOI:10.1038/s41586-021-03819-2
  • Varadi M, Anyango S, Deshpande M, et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022;50:D439–444.
  • Pathak D, Jin KS, Tandukar S, et al. Structural insights into the regulation of SigB activity by RsbV and RsbW. IUCrJ. 2020;7:737–747.
  • Challoner-Courtney IJ, Yudkin MD. Molecular and phenotypic characterization of promoter-proximal mutations in the spoIIA locus of Bacillus subtilis. J Bacteriol. 1993;175:5636–5641.
  • Evans R, O’Neill M, Pritzel A, et al. Protein complex prediction with AlphaFold-Multimer. 2022;2021:10.04.463034. DOI:10.1101/2021.10.04.463034
  • Mirdita M, Steinegger M, Söding J. Mmseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics. 2019;35:2856–2858.
  • Krissinel E, Henrick K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr. 2004;60:2256–2268.
  • Campbell EA, Masuda S, Sun JL, et al. Crystal structure of the Bacillus stearothermophilus anti-sigma factor SpoIIAB with the sporulation sigma factor sigmaF. Cell. 2002;108:795–807.
  • Bugge K, Brakti I, Fernandes CB, et al. Interactions by disorder – a matter of context. Front Mol Biosci. 2020 [accessed February 1, 2023];7. https://www.frontiersin.org/articles/10.3389/fmolb.2020.00110
  • Uversky VN. Intrinsic disorder, protein-protein interactions, and disease. Adv Protein Chem Struct Biol. 2018;110:85–121.
  • Thompson CM, Visick KL. Assessing the function of STAS domain protein SypA in Vibrio fischeri using a comparative analysis. Front Microbiol. 2015;6. DOI:10.3389/fmicb.2015.00760
  • Koide S, Sidhu SS. The importance of being tyrosine: lessons in molecular recognition from minimalist synthetic binding proteins. ACS Chem Biol. 2009;4:325–334.
  • Jones S, Thornton JM. Principles of protein-protein interactions. Proc Natl Acad Sci U S A. 1996;93:13–20.
  • Conte LL, Chothia C, Janin J, The atomic structure of protein-protein recognition sites11Edited by Fersht AR. The atomic structure of protein-protein recognition sites11Edited by. J Mol Biol. 1999;285:2177–2198.
  • Chen C-C, Lewis RJ, Harris R, et al. A supramolecular complex in the environmental stress signaling pathway of Bacillus subtilis. Mol Microbiol. 2003;49:1657–1669.
  • Akbar S, Gaidenko TA, Kang CM, et al. New family of regulators in the environmental signaling pathway which activates the general stress transcription factor sigma(B) of Bacillus subtilis. J Bacteriol. 2001;183:1329–1338.
  • Heinz V, Jäckel W, Kaltwasser S, et al. The Vibrio vulnificus stressosome is an oxygen-sensor involved in regulating iron metabolism. Commun Biol. 2022;5:1–14.