225
Views
0
CrossRef citations to date
0
Altmetric
Review

Role of acetylcholine and acetylcholinesterase in improving abiotic stress resistance/tolerance

, & ORCID Icon
Article: 2353200 | Received 07 Feb 2024, Accepted 06 May 2024, Published online: 28 May 2024

References

  • Raza A, Salehi H, Rahman MA, et al. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. Front Plant Sci. 2022;13. doi: 10.3389/fpls.2022.961872
  • Tanveer M, Shabala S. Neurotransmitters in signalling and adaptation to salinity stress in plants. In: Baluška F, Mukherjee S, Ramakrishna A, editors. Neurotransmitters in Plant Signaling and Communication. Springer Cham: Springer Nature; 2020 p. 49–15. doi:10.1007/978-3-030-54478-2
  • Roshchina VAV. Neurotransmitters in plant life. CRC Press Boca Raton: Taylor & Francis group; 2001. p. 292. doi:10.1201/9781482279856
  • Raza A, Salehi H, Rahman MA, et al. Plant hormones and neurotransmitter interactions mediate antioxidant defenses under induced oxidative stress in plants. Front Plant Sci. 2022;13:961872. doi: 10.3389/fpls.2022.961872
  • Barlow PW. Reflections on ‘plant neurobiology’. Biosystems. 2008;92(2):132–147. doi: 10.1016/j.biosystems.2008.01.004
  • Baluška F, Volkmann D, Menzel D. Plant synapses: actin-based domains for cell-to-cell communication. Trends Plant Sci. 2005;10(3):106–111. doi: 10.1016/j.tplants.2005.01.002
  • Akula R, Mukherjee S. New insights on neurotransmitters signaling mechanisms in plants. Plant Signal Behav. 2020;15(6):1737450. doi: 10.1080/15592324.2020.1737450
  • Braga I, Pissolato MD, Souza GM. Mitigating effects of acetylcholine supply on soybean seed germination under osmotic stress. Braz J Bot. 2017;40(3):617–624. doi: 10.1007/s40415-017-0367-2
  • Momonoki YS, Oguri S, Whallon JH. Acetylcholine as a signaling system to environmental stimuli in plants: II. Ca2+ movement in the coleoptile node cells of heat-stressed Zea mays seedlings. Jpn J Crop Sci. 1997;66(4):682–690.
  • Qin C, Su YY, Li BS, et al. Acetylcholine mechanism of action to enhance tolerance to salt stress in Nicotiana benthamiana. Photosynthetica. 2019;57(2):590–598. doi: 10.32615/ps.2019.084
  • Shen J, Qin C, Qin Y, et al. Acetylcholine alleviates salt stress in Zea mays L. by promoting seed germination and regulating phytohormone level and antioxidant capacity. J Plant Growth Regul. 2024;43(1):341–352. doi: 10.1007/s00344-023-11089-7
  • Brenner ED, Stahlberg R, Mancuso S, et al. Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci. 2006;11(8):413–419. doi: 10.1016/j.tplants.2006.06.009
  • Wang H, Zhang S, Wang X, et al. Role of acetylcholine on plant root-shoot signal transduction. Chinese Sci Bull. 2003;48(6):570–573. doi: 10.1360/03tb9121
  • Bamel K, Gupta SC, Gupta R. Acetylcholine causes rooting in leaf explants of in vitro raised tomato (Lycopersicon esculentum Miller) seedlings. Life Sci. 2007;80(24–25):2393–2396. doi: 10.1016/j.lfs.2007.01.039
  • Murata J, Watanabe T, Sugahara K, et al. High-resolution mass spectrometry for detecting Acetylcholine in Arabidopsis. Plant Signal Behav. 2015;10(10):e1074367. doi: 10.1080/15592324.2015.1074367
  • Kostír J, Klenha J, Jirácek V. The effect of choline and acetylcholine on the seed germination of some economically important plants. I. 1965.
  • Wang H, Wang X, Zhang S, et al. Muscarinic acetylcholine receptor is involved in acetylcholine regulating stomatal movement. Chin Sci Bull. 2000;45(3):250–252. doi: 10.1007/BF02884684
  • Wang H, Zhang S, Wang X, et al. Involvement of Ca 2+/CaM in the signal transduction of acetylcholine regulating stomatal movement. Chin Sci Bull. 2003;48(4):351–354. doi: 10.1007/BF03183228
  • Leng Q, Hua B, Guo Y, et al. Regulating role of acetylcholine and its antagonists in inward rectified K+ channels from guard cell protoplasts of Vicia faba. Sci China Ser Life Sci. 2000;43(2):217–224. doi: 10.1007/BF02879131
  • Volkov AG, Carrell H, Markin VS. Biologically closed electrical circuits in Venus flytrap. Plant Physiol. 2009;149(4):1661–1667. doi: 10.1104/pp.108.134536
  • Tezuka T, Akita I, Yoshino N. Self-incompatibility involved in the level of acetylcholine and cAMP. Plant Signal Behav. 2007;2(6):475–476. doi: 10.4161/psb.2.6.4483
  • Tezuka T, Akita I, Yoshino N, et al. Regulation of self-incompatibility by acetylcholine and cAMP in Lilium longiflorum. J Plant Physiol. 2007;164(7):878–885. doi: 10.1016/j.jplph.2006.05.013
  • Sugiyama K-I, Tezuka T. Acetylcholine promotes the emergence and elongation of lateral roots of Raphanus sativus. Plant Signal Behav. 2011;6(10):1545–1553. doi: 10.4161/psb.6.10.16876
  • Wiśniewska J, Tretyn A. Acetylcholinesterase activity in Lycopersicon esculentum and its phytochrome mutants. Plant Physiol Biochem. 2003;41(8):711–717. doi: 10.1016/S0981-9428(03)00111-6
  • Fluck RA, Leber PA, Lieser JD, et al. Choline conjugates of auxins. I. Direct evidence for the hydrolysis of choline-auxin conjugates by pea cholinesterase. Plant Physiol Biochem. 2000;38(4):301–308. doi: 10.1016/S0981-9428(00)00742-7
  • Dekhuijzen H. The effect of acetylcholine on growth and on growth inhibition by CCC in wheat seedlings. Planta. 1973;111(2):149–156. doi: 10.1007/BF00386275
  • Evans ML. Promotion of cell elongation in Avena coleoptiles by acetylcholine. Plant Physiol. 1972;50(3):414. doi: 10.1104/pp.50.3.414
  • Jones RS, Stutte CA. Acetylcholine and red-light influence on ethylene evolution from soyabean leaf tissues. Ann Bot. 1986;57(6):897–900. doi: 10.1093/oxfordjournals.aob.a087175
  • Lawson VR, Brady RM, Campbell A, et al. Interaction of acetylcholine chloride with IAA, GA3 and red light in the growth of excised apical coleoptile segments. Bull Torrey Bot Club. 1978;105(3):187–191. doi: 10.2307/2484113
  • Wessler I, Kilbinger H, Bittinger F, et al. The non-neuronal cholinergic system the biological role of non-neuronal acetylcholine in plants and humans. Jpn J Pharmacol. 2001;85(1):2–10. doi: 10.1254/jjp.85.2
  • Tretyn A, Kendrick RE. Acetylcholine in plants: presence, metabolism and mechanism of action. Bot Rev. 1991;57(1):33–73. doi: 10.1007/BF02858764
  • Matilla MA, Velando F, Tajuelo A, et al. Chemotaxis of the human pathogen Pseudomonas aeruginosa to the neurotransmitter acetylcholine. MBio. 2022;13(2):e03458–21. doi: 10.1128/mbio.03458-21
  • Erland LAE, and Saxena PK. In: Sopory S, editor Sens Biol Plants. Singapore:Springer; 2019. p. 411–449. doihttps://doi.org/10.1007/978-981-13-8922-1_16
  • Chhabra N, Malik C. Influence of spectral quality of light on pollen tube elongation in Arachis hypogaea. Ann Bot. 1978;42(5):1109–1117. doi: 10.1093/oxfordjournals.aob.a085551
  • Yamamoto K, Oguri S, Momonoki YS. Characterization of trimeric acetylcholinesterase from a legume plant, Macroptilium atropurpureum Urb. Planta. 2008;227(4):809–822. doi: 10.1007/s00425-007-0658-0
  • Hartmann E, Gupta R. 11. Acetylcholine as a signaling system in plants. 1989.
  • Jia W, Zhang J. Stomatal movements and long-distance signaling in plants. Plant Signal Behav. 2008;3(10):772–777. doi: 10.4161/psb.3.10.6294
  • Fromm J. Long-distance electrical signaling and physiological functions in higher plants. In: Volkov AG, editor. In Plant electrophysiology: Theory and Methods. Berlin Heidelberg: Springer; 2006. p. 269–285. doi:10.1007/978-3-540-37843-3_12
  • Horiuchi Y, Kimura R, Kato N, et al. Evolutional study on acetylcholine expression. Life Sci. 2003;72(15):1745–1756. doi: 10.1016/S0024-3205(02)02478-5
  • Kawashima SK, Fujii T. Basic and clinical aspects of non-neuronal acetylcholine: Overview of non-neuronal cholinergic systems and their biological significance. J Pharmacol Sci. 2008;106(2):167–173. doi: 10.1254/jphs.FM0070073
  • Fluck RA, Jaffe MJ. C Cholinesterases from plant tissue: V. Cholinesterase is not pectin esterase. Plant Physiology. 1974;54(5):797–798.
  • Hartmann E. Attempts to demonstrate incorporation of labelled precursors into acetylcholine by Phaseolus vulgaris seedlings. Phytochemistry. 1979;18(10):1643–1646. doi: 10.1016/0031-9422(79)80175-2
  • Roshchina VV, Mukhin EN. Acetylcholine action on the photochemical reactions of pea chloroplasts. Plant Sci. 1985;42(2):95–98. doi: 10.1016/0168-9452(85)90148-7
  • Mukherjee A. Computational analysis of a cys-loop ligand gated ion channel from the green alga chlamydomonas reinhardtii. Mol Biol. 2015;49(5):742–754. doi: 10.1134/S002689331505012X
  • Beljelarskaya S, Sutton F. Expression of the mammalian serotonin receptor in plant and amphibian cells. Mol Biol. 2003;37(3):387–391. doi: 10.1023/A:1024283126198
  • Skirycz A, Świędrych A, Szopa J. Expression of human dopamine receptor in potato (Solanum tuberosum) results in altered tuber carbon metabolism. Bmc Plant Biol. 2005;5(1):1–12. doi: 10.1186/1471-2229-5-1
  • Roshchina V. Action of acetylcholine agonists and antagonists on reactions of photosynthetic membranes. Photosynthetica (Praha). 1987;21(3):296–300.
  • Tretyni A, Bossen M, Kendrick R. Evidence for different types of acetylcholine receptors in plants. In: Progress in Plant Growth Regulation: Proceedings of the 14th International Conference on Plant Growth Substances; 1992 [1991 Jul 21–26]; Amsterdam: Springer.
  • Bamel K, Gupta R, Gupta SC. Acetylcholine suppresses shoot formation and callusing in leaf explants of in vitro raised seedlings of tomato, Lycopersicon esculentum Miller var. Pusa Ruby. Plant Signal Behav. 2016;11(6):e1187355. doi: 10.1080/15592324.2016.1187355
  • Bamel K, Gupta R, Gupta SC. Nicotine promotes rooting in leaf explants of in vitro raised seedlings of tomato, Lycopersicon esculentum Miller var. Pusa Ruby. Int Immunopharmacol. 2015;29(1):231–234. doi: 10.1016/j.intimp.2015.09.001
  • Di Sansebastiano G-P, Fornaciari S, Barozzi F, et al. New insights on plant cell elongation: a role for acetylcholine. Int J Mol Sci. 2014;15(3):4565–4582. doi: 10.3390/ijms15034565
  • Bamel K, Mondal N. In vitro culture using nicotine and d-tubocurarine and in silico analysis depict the presence of acetylcholine receptor (AChR) in tomato (Solanum lycopersicum L.). Vitro Cell Dev Biol Plant. 2023;59(1):39–48. doi: 10.1007/s11627-022-10324-2
  • Rotundo RL. Expression and localization of acetylcholinesterase at the neuromuscular junction. J Neurocytol. 2003;32(5–8):743–766. doi: 10.1023/B:NEUR.0000020621.58197.d4
  • Fluck R, Jaffe M. Cholinesterases from plant tissues VI. Preliminary characterization of enzymes from Solanum melongena L. and Zea mays L. Biochimica et Biophysica Acta (BBA)-Enzymol. 1975;410(1):130–134. doi: 10.1016/0005-2744(75)90213-2
  • Tretyn A, Foulkesweg G. Acetylcholine in Plants: Presence. Metabolism Forest. 1991;62:275–277.
  • Wessler I, Kirkpatrick C, Racke K. The cholinergic ‘pitfall’: acetylcholine, a universal cell molecule in biological systems, including humans. Clin Exp Pharma Physio. 1999;26(3):198–205. doi: 10.1046/j.1440-1681.1999.03016.x
  • Momonoki YS. Acetylcholine as a signaling system to environmental stimuli in crops. Jpn J Crop Sci. 1998;67(3):273–283. doi: 10.1626/jcs.67.273
  • Yamamoto K, Shida S, Honda Y, et al. Overexpression of acetylcholinesterase gene in rice results in enhancement of shoot gravitropism. Biochem Biophys Res Commun. 2015;465(3):488–493. doi: 10.1016/j.bbrc.2015.08.044
  • Yamamoto K, Sakamoto H, Momonoki YS. Altered expression of acetylcholinesterase gene in rice results in enhancement or suppression of shoot gravitropism. Plant Signal Behav. 2016;11(4):e1163464. doi: 10.1080/15592324.2016.1163464
  • Beri V, Gupta R. Acetylcholinesterase inhibitors neostigmine and physostigmine inhibit induction of alpha-amylase activity during seed germination in barley, Hordeum vulgare var. Jyoti. Life Sci. 2007;80(24–25):2386–2388. doi: 10.1016/j.lfs.2007.02.018
  • Kasturi R. De novo synthesis of acetylcholinesterase in roots of Pisum sativum. Phytochemistry. 1978;17(4):647–649. doi: 10.1016/S0031-9422(00)94201-8
  • Roshchina V, Mukhin E. Acetylcholinesterase activity in chloroplasts and acetylcholine effects on photochemical reactions. 1985.
  • Raineri M, Modenesi P. Preliminary evidence for a cholinergic-like system in lichen morphogenesis. Histochem J. 1986;18(11–12):647–657. doi: 10.1007/BF01675300
  • Dettbarn W. Acetylcholinesterase activity in Nitella. Nature. 1962;194(4834):1175–1176. doi: 10.1038/1941175b0
  • Sarangle Y, Bamel K, Purty RS. Identification of acetylcholinesterase like gene family and its expression under salinity stress in Solanum lycopersicum. J Plant Growth Regul. 2023;43(3):1–21. doi: 10.1007/s00344-023-11152-3
  • Yamamoto K, Oguri S, Chiba S, et al. Molecular cloning of acetylcholinesterase gene from Salicornia europaea L. Plant Signal Behav. 2009;4(5):361–366. doi: 10.4161/psb.4.5.8360
  • Sagane Y, Nakagawa T, Yamamoto K, et al. Molecular characterization of maize acetylcholinesterase. A novel enzyme family in the plant kingdom. Plant Physiol. 2005;138(3):1359–1371. doi: 10.1104/pp.105.062927
  • Riov J, Jaffe M. Cholinesterases from plant tissues: I. Purification and characterization of a cholinesterase from mung bean roots. Plant Physiol. 1973;51(3):520–528. doi: 10.1104/pp.51.3.520
  • Sagane Y, Nakagawa T, Yamamoto K, et al. Molecular characterization of maize acetylcholinesterase: a novel enzyme family in the plant kingdom. Plant Physiol. 2005;138(3):1359–1371. doi: 10.1104/pp.105.062927
  • Shen G, Sun W, Chen Z, et al. Plant GDSL esterases/lipases: Evolutionary, physiological and molecular functions in plant development. Plants. 2022;11(4). doi: 10.3390/plants11040468
  • Muralidharan M, Buss K, Larrimore KE, et al. The Arabidopsis thaliana ortholog of a purported maize cholinesterase gene encodes a GDSL-lipase. Plant Mol Biol. 2013;81(6):565–576. doi: 10.1007/s11103-013-0021-8
  • Akoh CC, Lee G-C, Liaw Y-C, et al. GDSL family of serine esterases/lipases. Progress Lipid Res. 2004;43(6):534–552. doi: 10.1016/j.plipres.2004.09.002
  • Fluck R, Jaffe M. Cholinesterases from plant tissues: III. Distribution and subcellular localization in Phaseolus aureus Roxb. Plant Physiol. 1974;53(5):752–758. doi: 10.1104/pp.53.5.752
  • Yamamoto K, Momonoki YS. Subcellular localization of overexpressed maize AChE gene in rice plant. Plant Signal Behav. 2008;3(8):576–577. doi: 10.4161/psb.3.8.5732
  • Fluck R, Jaffe M. The distribution of cholinesterases in plant species. Phytochemistry. 1974;13(11):2475–2480. doi: 10.1016/S0031-9422(00)86923-X
  • Franzoni G, Trivellini A, Bulgari R, et al. Bioactive molecules as regulatory signals in plant responses to abiotic stresses. In: Khan MIR, editor. Plant Signaling Molecules: Role and Regulation Under Stressful Environments. Cambridge United Kingdom: Elsevier; 2019. p. 169–182.
  • Erland LAE, Saxena PK. Beyond a neurotransmitter: the role of serotonin in plants. Neurotransmitter. 2017;4(5):1–12.
  • Qin C, Ahanger MA, Lin B, et al. Comparative transcriptome analysis reveals the regulatory effects of acetylcholine on salt tolerance of Nicotiana benthamiana. Phytochemistry. 2021;181:112582. doi: 10.1016/j.phytochem.2020.112582
  • Braga-Reis I, Neris DM, Ribas AF, et al. Gamma-aminobutyric acid (GABA) and acetylcholine (ACh) alleviate water deficit effects in soybean: From gene expression up to growth performance. Environ Exp Bot. 2021;182:104303. doi: 10.1016/j.envexpbot.2020.104303
  • Qi M, Zheng X, Niu G, et al. Supplementation of acetylcholine mediates physiological and biochemical changes in tobacco lead to alleviation of damaging effects of drought stress on growth and photosynthesis. J Plant Growth Regul. 2023;42(8):4616–4628. doi: 10.1007/s00344-022-10642-0
  • Su Y, Qin C, Begum N, et al. Acetylcholine ameliorates the adverse effects of cadmium stress through mediating growth, photosynthetic activity and subcellular distribution of cadmium in tobacco (Nicotiana benthamiana). Ecotoxicol Environ Saf. 2020;198:110671. doi: 10.1016/j.ecoenv.2020.110671
  • Momonoki YS, Momonoki T. Changes in acetylcholine levels following leaf wilting and leaf recovery by heat stress in plant cultivars. Jpn J Crop Sci. 1991;60(2):283–290.
  • Momonoki YS, Oguri S, Kato S, et al. Studies on the mechanism of salt tolerance in Salicornia europaea L.: III, Salt accumulation and ACh function. Jpn J Crop Sci. 1996;65(4):693–699.
  • Momonoki YS, Momonoki T, Whallon JH. Acetylcholine as a signaling system to environmental stimuli in plants: I. Contribution of Ca2+ in heat-stressed Zea mays seedlings. Jpn J Crop Sci. 1996;65(2):260–268.
  • Yamamoto K, Sakamoto H, Momonoki YS. Maize acetylcholinesterase is a positive regulator of heat tolerance in plants. J Plant Physiol. 2011;168(16):1987–1992. doi: 10.1016/j.jplph.2011.06.001
  • Momonoki YS, Momonoki T. Changes in acetylcholine-hydrolyzing activity in heat-stressed plant cultivars. Jpn J Crop Sci. 1993;62(3):438–446.
  • Momonoki YS, Momonoki T. The influence of heat stress on acetylcholine content and its hydrolyzing activity in Macroptilium atropurpureum cv. Siratro. Jap J Crop Sci. 1992;61(1):112–118.
  • Sarangle Y, Bamel K, Purty RS. Identification of acetylcholinesterase like gene family and its expression under salinity stress in Solanum lycopersicum. J Plant Growth Regul. 2024;43(3):940–960. doi: 10.1007/s00344-023-11152-3
  • Madhavan S, Sarath G, Lee BH, et al. Guard cell protoplasts contain acetylcholinesterase activity. Plant Sci. 1995;109(2):119–127. doi: 10.1016/0168-9452(95)04164-P
  • Wang H, Wang X, Zhang S, et al. Nicotinic acetylcholine receptor is involved in acetylcholine regulating stomatal movement. Sci China Ser Life Sci. 1998;41(6):650–656. doi: 10.1007/BF02882908
  • Meng F, Liu X, Zhang S, et al. Localization of muscarinic acetylcholine receptor in plant guard cells. Chin Sci Bull. 2001;46(7):586–587. doi: 10.1007/BF02900416
  • Roychoudhury A. Neurotransmitter acetylcholine comes to the plant rescue. J Mol Cell Biol Forecast. 2020;3(1):1019.
  • Shen J, Qin C, Qin Y, et al. Acetylcholine alleviates salt stress in Zea mays L. by promoting seed germination and regulating phytohormone level and antioxidant capacity. J Plant Growth Regul. 2023;43(1):1–12. doi: 10.1007/s00344-023-11089-7
  • Qin C, Ahanger MA, Zhou J, et al. Beneficial role of acetylcholine in chlorophyll metabolism and photosynthetic gas exchange in Nicotiana benthamiana seedlings under salinity stress. Plant Biol J. 2020;22(3):357–365. doi: 10.1111/plb.13079
  • Qi M, Zheng X, Niu G, et al. Supplementation of acetylcholine mediates physiological and biochemical changes in tobacco lead to alleviation of damaging effects of drought stress on growth and photosynthesis. J Plant Growth Regul. 2022;42(8):4616–4628. doi: 10.1007/s00344-022-10642-0
  • Qin C, Ahanger MA, Zhou J, et al. Beneficial role of acetylcholine in chlorophyll metabolism and photosynthetic gas exchange in Nicotiana benthamiana seedlings under salinity stress. Plant Biol (Stuttg). 2020;22(3):357–365. doi: 10.1111/plb.13079
  • Yamamoto K, Momonoki YS. Tissue localization of maize acetylcholinesterase associated with heat tolerance in plants. Plant Signal Behav. 2012;7(3):301–305. doi: 10.4161/psb.19007
  • Momonoki YS. Occurrence of acetylcholine-hydrolyzing activity at the stele-cortex interface. Plant Physiol. 1992;99(1):130–133. doi: 10.1104/pp.99.1.130
  • Bita CE, Gerats T. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci. 2013;4:273. doi: 10.3389/fpls.2013.00273
  • Roshchina V, Yashin V. Secreting cells of Saintpaulia as a model for studies of plant cholinergic system. Biologicheskie Membrany. 2013;30(5–6):454–461.
  • Roshchina V, Yashin, VA, Švirst, NA, et al. Secreting cells as models to study the role of acetylcholine in signalling and communications of organisms. In: Zinchenko VP, Berezhnov AV, editors. The book of international conference “reception and intracellular signaling; 27–30 May 2013; EMA Pushchino; 2013. Vol. 2. p. 790–795
  • Roshchina VAV. Model systems to study the excretory function of higher plants. Springer Dordrecht: Springer; 2014.
  • Michelson MJ, Zeimal EV. Acetylcholine: an approach to the molecular mechanism of action. 1st ed. Oxford: Pergammon Press; 1973.
  • Kennedy DO. Plants and the human brain. USA: Oxford University Press; 2014.
  • Malik S. Cholinesterases in animals and Arabidopsis Thaliana. Int J Innovative Res Dev. 2014;3(2):280–281.
  • Wessler I, Michel-Schmidt R, Kirkpatrick CJ. pH-dependent hydrolysis of acetylcholine: Consequences for non-neuronal acetylcholine. Int Immunopharmacol. 2015;29(1):27–30. doi: 10.1016/j.intimp.2015.04.039
  • Roshchina VV. The fluorescence methods to study neurotransmitters (Biomediators) in plant cells. J Fluoresc. 2016;26(3):1029–1043. doi: 10.1007/s10895-016-1791-6
  • Roshchina VV. New Trends and Perspectives in the Evolution of Neurotransmitters in Microbial, Plant, and Animal Cells. In: Lyte M, editor. Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health. Advances in Experimental Medicine and Biology. Springer Cham: Springer; 2016. Vol. 874. p. 25–77.
  • Fillafer C, Schneider MF. On the excitation of action potentials by protons and its potential implications for cholinergic transmission. Protoplasma. 2016;253(2):357–365. doi: 10.1007/s00709-015-0815-4
  • Roshchina V, Shvirst N. Cholinesterase in contractile structures of plants and animals: histochemical experiments with azocompounds. In Biological Motility Ed Udaltsov SN Materials of International Symposium. Pushchino: SYNCHROBOOK; 2016. p. 198–202.
  • Amaroli A. Neurotransmitters or Biomediators. Cholinergic Syst Protozoa EC Microbiol. 2017;7:40–41.
  • Ramakrishna A, Roshchina VV. Neurotransmitters in plants: perspectives and applications. Boca Raton: CRC Press, Taylor & Francis; 2018. doi:10.1201/b22467
  • Roshchina V. Cholinesterase in secreting cells and isolated organelles of plants. Biologicheskie Membrany. 2018;35(2):143–149.
  • Kurchii BA. Possible participation of acetylcholine in free-radical processes (redox reactions) in living cells. In: Ramakrishna A, Roshchina V, editors. Neurotransmitters in Plants: Perspectives and Applications. Boca Raton:: CRC Press, Taylor & Francis; 2018. p. 211–217.
  • Roshchina VV. Inter-and intracellular signaling in plant cells with participation of neurotransmitters (Biomediators). In: Ramakrishna A, and Roshchina V, editors. Neurotransmitters in Plants: perspectives and Applications. Boca Raton: CRC Press, Taylor & Francis; 2018. p. 147–180.
  • Roshchina V. Tools for microanalysis of the neurotransmitter location in plant cells. Neurotransmitters in plants, perspectives and applications. Boca Raton: CRC Press; 2018. p. 135–146.
  • Yang L, Ma X, Guo Y, et al. Acetylcholine (ACh) enhances Cd tolerance through transporting ACh in vesicles and modifying Cd absorption in duckweed (Lemna turionifera 5511). Environ Pollut. 2023;335:122305. doi: 10.1016/j.envpol.2023.122305