66
Views
0
CrossRef citations to date
0
Altmetric
PHYSICS AND CHEMISTRY

Microwave-Assisted Green Synthesis of Small Gold Nanoparticles Using Aqueous Garlic (Allium sativum) Extract: Their Application as Antibiotic Carriers

&
Pages 163-173 | Received 25 Jan 2012, Accepted 22 Feb 2012, Published online: 15 Jun 2012

REFERENCES

  • Rai , A. , Prabhune , A. and Perry , C. C. 2010 . Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings . J. Mater. Chem. , 20 : 6789 – 6798 .
  • Pornpattananangkul , D. , Zhang , L. , Olson , S. , Aryal , S. , Obonyo , M. , Vecchio , K. , Huang , C.-M. and Zhang , L. 2011 . Bacterial toxin–triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection . J. Am. Chem. Soc. , 133 : 4132 – 4139 .
  • Turos , E. , Shim , J. Y. , Wang , Y. , Greenhalgh , K. , Reddy , G. S. K. , Dickey , S. and Lim , D. V. 2007 . Antibiotic-conjugated polyacrylate nanoparticles: New opportunities for development of anti-MRSA agents . Bioorg. Med. Chem. Lett. , 17 : 53 – 56 .
  • Selvaraj , V. , Nirmala Grace , A. and Alagar , M. 2010 . Antimicrobial and anticancer efficacy of antineoplastic agent capped gold nanoparticles . J. Biomed. Nanotechnol. , 6 : 129 – 137 .
  • Wang , F. , Wang , Y.-C. , Dou , S. , Xiong , M.-H. , Sun , T.-M. and Wang , J. 2011 . Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells . ACS Nano , 5 : 3679 – 3692 .
  • Brown , S. D. , Nativo , P. , Smith , J. A. , Stirling , D. , Edwards , P. R. , Venugopal , B. , Flint , D. J. , Plumb , J. A. , Graham , D. and Wheate , N. J. 2010 . Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin . J. Am. Chem. Soc. , 132 : 4678 – 4684 .
  • Tom , R. T. , Suryanarayanan , V. , Reddy , P. G. , Baskaran , S. and Pradeep , T. 2004 . Ciprofloxacin-protected gold nanoparticles . Langmuir , 20 : 1909 – 1914 .
  • Gu , H. , Ho , P. L. , Tong , E. , Wang , L. and Xu , B. 2003 . Presenting vancomycin on nanoparticles to enhance antimicrobial activities . Nano Lett. , 3 : 1261 – 1263 .
  • Grace , A. N. and Pandian , K. 2007 . Quinolone antibiotic– capped gold nanoparticles and their antibacterial efficacy against gram positive and gram negative organisms . J. Bionanosci. , 1 : 96 – 105 .
  • Grace , A. N. and Pandian , K. 2007 . Antibacterial efficacy of aminoglycosidic antibiotics protected gold nano- particles—A brief study . Colloid. Surface. Physicochem. Eng. Aspect. , 297 : 63 – 70 .
  • Brown , K. R. , Walter , D. G. and Natan , M. J. 1999 . Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape . Chem. Mater. , 12 : 306 – 313 .
  • Daniel , M.-C. and Astruc , D. 2003 . Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology . Chem. Rev. , 104 : 293 – 346 .
  • Han , M. Y. and Quek , C. H. 1999 . Photochemical synthesis in formamide and room-temperature Coulomb staircase behavior of size-controlled gold nanoparticles . Langmuir , 16 : 362 – 367 .
  • Maier , S. A. , Brongersma , M. L. , Kik , P. G. , Meltzer , S. and Atwater , H. A. 2001 . Plasmonics—A route to nanoscale optical devices . Adv. Mater. , 13 : 1501 – 1505 .
  • Seol , Y. , Carpenter , A. E. and Perkins , T. T. 2006 . Gold nanoparticles: Enhanced optical trapping and sensitivity coupled with significant heating . Optic. Lett. , 31 : 2429 – 2431 .
  • Zayats , M. , Kharitonov , A. B. and Pogorelova , S. P. 2003 . Probing photoelectrochemical processes in Au-CdS nanoparticle arrays by surface plasmon resonance: Application for the detection of acetylcholine esterase inhibitors . J. Am. Chem. Soc. , 125 : 16006 – 16014 .
  • Poliakoff , M. , Fitzpatrick , J. M. , Farren , T. R. and Anastas , P. T. 2002 . Green chemistry: Science and politics of change . Science , 297 : 807 – 810 .
  • Chandra , M. and Das , P. K. 2009 . Green routes to noble metal nanoparticle synthesis . Int. J. Green Nanotechnol. Phys. Chem. , 1 : 10 – 25 .
  • Das , S. and Marsili , E. 2010 . A green chemical approach for the synthesis of gold nanoparticles: Characterization and mechanistic aspect . Rev. Environ. Sci. Biotechnol. , 9 : 199 – 204 .
  • Mandal , D. , Bolander , M. E. , Mukhopadhyay , D. , Sarkar , G. and Mukherjee , P. 2006 . The use of microorganisms for the formation of metal nanoparticles and their application . Appl. Microbiol. Biotechnol. , 69 : 485 – 492 .
  • Kaushik , N. T. , Snehit , S. M. and Rasesh , Y. P. 2010 . Biological synthesis of metallic nanoparticles . Nanomedicine , 6 : 257 – 262 .
  • Kumar , V. and Yadav , S. K. 2009 . Plant-mediated synthesis of silver and gold nanoparticles and their applications . J. Chem. Tech. Biotechnol. , 84 : 151 – 157 .
  • Zhou , Y. , Itoh , H. and Uemura , T. 2001 . Synthesis of novel stable nanometer-sized metal (M = Pd, Au, Pt) colloids protected by a π-conjugated polymer . Langmuir , 18 : 277 – 283 .
  • Caddick , S. and Fitzmaurice , R. 2009 . Microwave enhanced synthesis . Tetrahedron , 65 : 3325 – 3355 .
  • Doolittle , J. W. and Dutta , P. K. 2006 . Influence of microwave radiation on the growth of gold nanoparticles and microporous zincophosphates in a reverse micellar system . Langmuir , 22 : 4825 – 4831 .
  • Fan , C. , Li , N. , Zhao , S. , Chen , J. and Li , X. 2008 . Efficient one pot synthesis of chitosan-induced gold nanoparticles by microwave irradiation . Mater. Lett. , 62 : 3518 – 3520 .
  • Sun , X. and Luo , Y. 2005 . Size-controlled synthesis of dendrimer-protected gold nanoparticles by microwave radiation . Mater. Lett. , 59 : 4048 – 4050 .
  • Rastogi , L. and Arunachalam , J. 2011 . Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential . Mater. Chem. Phys. , 129 : 558 – 563 .
  • Milner , J. A. 2001 . A historical perspective on garlic and cancer . J. Nutr. , 131 : 1027S – 1031S .
  • Bonev , B. , Hooper , J. and Parisot , J. 2008 . Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method . J. Antimicrob. Agents Chemother. , 61 : 1295 – 1301 .
  • Kreibig , U. and Vollmer , M. Optical Properties of Metal Clusters , Springer Series in Materials Science: New York . 1995
  • Zupancic , M. , Arcon , I. , Bukovac , P. and Kodre , A. 2002 . A Physico-chemical study of the interaction of cobalt(II) ion with ciprofloxacin . Croat. Chem. Acta , 75 : 1 – 12 .
  • Drlica , K. and Zhao , X. 1997 . DNA gyrase, topoisomerase IV, and the 4-quinolones . Microbiol. Mol. Biol. Rev. , 61 : 377 – 392 .
  • Rosemary , M. J. , MacLaren , I. and Pradeep , T. 2006 . Investigations of the antibacterial properties of ciproflox- acin@SiO2 . Langmuir , 22 : 10125 – 10129 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.