834
Views
0
CrossRef citations to date
0
Altmetric
Non-CO2 Greenhouse Gases

Crop residues integration with nitrogen rates reduces yield-scaled nitrous oxide emissions and improves maize yield and soil quality

, , , , , , & show all
Article: 2310856 | Received 17 Jul 2023, Accepted 17 Jan 2024, Published online: 02 Feb 2024

References

  • Adviento-Borbe MAA, Haddix ML, Binder DL, Walters DT, Dobermann A. 2007. Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems. Glob Change Biol. 13(9):1972–19. doi: 10.1111/j.1365-2486.2007.01421.x.
  • Ahmed S, Jahiruddin M, Razia S, Begum RA, Bisws JC, Rahman ASMM, Ali MM, Islam KMS, Hossain MM, Gani MN. 2018. Fertilizer recommendation guide-2018. Vol. 1215, Bangladesh Agricultural Research Council: Farmgate, Dhaka, Bangladesh; p. 223.
  • Akiyama H, Yamamoto A, Uchida Y, Hoshino YT, Tago K, Wang Y, Hayatsu M. 2020. Effect of low C: N crop residue input on N2O, NO, and CH4 fluxes from Andosol and Fluvisol fields. Sci Total Environ. 713:136677. doi: 10.1016/j.scitotenv.2020.136677.
  • Ambus P, Jensen ES, Robertson GP. 2001. Nitrous oxide and N-leaching losses from agricultural soil: influence of crop residue particle size, quality and placement. Phyton. 41(3):7–16.
  • Andrews EM, Kassama S, Smith EE, Brown PH, Khalsa SDS. 2021. A review of potassium-rich crop residues used as organic matter amendments in tree crop agroecosystems. Agriculture. 11(7):580. doi: 10.3390/agriculture11070580.
  • Baggs EM, Rees RM, Smith KA, Vinten AJA. 2000. Nitrous oxide emission from soils after incorporating crop residues. Soil Use Manag. 16(2):82–87. doi: 10.1111/j.1475-2743.2000.tb00179.x.
  • BBS. 2020. Bangladesh bureau of statistics. Bangladesh Bureau of Statistics. Statistical year book Bangladesh 2019. Dhaka.
  • Bell RW, Haque ME, Jahiruddin M, Rahman MM, Miah MAM, Islam MA, Hossen MA, Salahin M, Hossain T, Zahan MM. 2019. Conservation agriculture for rice-based intensive cropping by smallholders in the eastern gangetic plain. Agriculture. 9(1):5. doi: 10.3390/agriculture9010005.
  • Bouwman AF, Boumans LJM, Batjes NH. 2002. Emissions of N2O and NO from fertilized fields: summary of available measurement data. Glob Biochem Cycle. 16(4):6–1. doi: 10.1029/2001GB001811.
  • Burgess AJ, Wang P. 2023. Not all Calvin’s are equal: differential control of the Calvin cycle in C3 versus C4 plants. Plant Physiol. 191(2):817–819. doi: 10.1093/plphys/kiac531.
  • Butterly CR, Baldock JA, Tang C. 2013. The contribution of crop residues to changes in soil pH under field conditions. Plant Soil. 366(1–2):185–198. doi: 10.1007/s11104-012-1422-1.
  • Cantarella H, Otto R, Soares JR, de Brito Silva AG. 2018. Agronomic efficiency of NBPT as a urease inhibitor: a review. J Adv Res. 13:19–27. doi: 10.1016/j.jare.2018.05.008.
  • Chen H, Li X, Hu F, Shi W. 2013. Soil nitrous oxide emissions following crop residue addition: a meta-analysis. Glob Change Biol. 19(10):2956–2964. doi: 10.1111/gcb.12274.
  • Conijn JG, Bindraban PS, Schroder JJ, Jongschaap REE. 2018. Can our global food system meet food demand within planetary boundaries? Agric Ecosyst Environ. 251:244–256. doi: 10.1016/j.agee.2017.06.001.
  • Davidson E. 2009. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat Geosci. 2:659–662. doi: 10.1038/ngeo608.
  • Davis KF, Gephart JA, Emery KA, Leach AM, Galloway JN, D’Odorico P. 2016. Meeting future food demand with current agricultural resources. Global Environ Change. 39:125–132. doi: 10.1016/j.gloenvcha.2016.05.004.
  • Dong YH, Ouyang Z, Li YS, Li P, Zhang L. 2007. Influence of different fertilization on CO2 and N2O fluxes from agricultural soil. Soil Fert Sci In China. 4:34e39.
  • FAO/UNDP. 1988. Land resources appraisal of Bangladesh for agricultural development. Vol. 2, Agroecological regions of Bangladesh. Rome: FAO; pp. 1–570.
  • Ferdous J, Mumu NJ, Hossain MB, Hoque MA, Zaman M, Müller C, Jahangir MMR. 2023. Co-application of biochar and compost with decreased N fertilizer reduced annual ammonia emissions in wetland rice. Front Sustain Food Syst. 6:1067112. doi: 10.3389/fsufs.2022.1067112.
  • Gee GW, Bauder JW. 1979. Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measurement parameters. SSSAJ. 43(5):1004–1007. doi: 10.2136/sssaj1979.03615995004300050038x.
  • Helyar KR, Porter WM. 1989. Soil Acidification, Its Measurements and the Processes Involved. In: Robson AD, editor. Soil Acidity and Plant Growth. Sydney: Academic Press; p. 61–101. doi: 10.1016/b978-0-12-590655-5.50007-4.
  • Horváth L, Grosz B, Machon A, Tuba Z, Nagy Z, Czóbel SZ, Balogh J, Péli E, Fóti SZ, Weidinger T. 2010. Estimation of nitrous oxide emission from Hungarian semi-arid sandy and loess grasslands; effect of soil parameters, grazing, irrigation and use of fertilizer. Agri Ecosyst Environ. 139(1–2):255–263. doi: 10.1016/j.agee.2010.08.011.
  • Huang T, Gao B, Christie P, Ju X. 2013. Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management. Biogeosci. 10(12):7897–7911. doi: 10.5194/bg-10-7897-2013.
  • Huang T, Yang H, Huang C, Ju X. 2017. Effect of fertilizer N rates and straw management on yield-scaled nitrous oxide emissions in a maize-wheat double cropping system. Field Crops Res. 204:1–11. doi: 10.1016/j.fcr.2017.01.004.
  • Huang Y, Zou J, Zheng X, Wang Y, Xu X. 2004. Nitrous oxide emissions as influenced by amendment of plant residues with different C: N ratios. Soil Biol Biochem. 36(6):973–981. doi: 10.1016/j.soilbio.2004.02.009.
  • Hunt J. 1980. Determination of total sulphur in small amounts of plant material. Analyst (Lond). 105(1246):83–85. doi: 10.1039/an9800500083.
  • Hu XK, Su F, Ju XT, Gao B, Oenema O, Chrstie P, Huang BX, Jiang RF, Zhang FS. 2013. Greenhouse gas emissions from a wheat-maize double cropping system with different nitrogen fertilization regimes. Environ Pollut. 176:198–207. doi: 10.1016/j.envpol.2013.01.040.
  • Hutchinson GL, Mosier AR. 1981. Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Sci Soc Amer J. 45(2):311–316. doi: 10.2136/sssaj1981.03615995004500020017x.
  • Islam SF, Sander BO, Quilty JR, De Neergaard A, Van Groenigen JW, Jensen LS. 2020. Mitigation of greenhouse gas emissions and reduced irrigation water use in rice production through water-saving irrigation scheduling, reduced tillage and fertilizer application strategies. Sci Total Environ. 739:140215. doi: 10.1016/j.scitotenv.2020.140215.
  • Jackson ML. 1973. Soil chemical analysis, Prentice Hall of India Pvt. Vol. 498. New Delhi, India: Ltd; pp. 151–154.
  • Jahangir MMR, Bell RW, Uddin S, Ferdous J, Nasreen SS, Haque ME, Satter MA, Zaman M, Ding W, Jahiruddin M, et al. 2022. Conservation agriculture with optimum fertilizer nitrogen rate reduces GWP for rice cultivation in floodplain soils. Front Environ Sci. 10:853655. doi: 10.3389/fenvs.2022.853655.
  • Jahangir MMR, Rahman S, Uddin S, Mumu NJ, Biswas C, Jahiruddin M, Müller C, Zaman M. 2022. Crop residue interactions with fertilizer rate enhances volatilization loss and reduces nitrogen use efficiency in irrigated maize and potato. Arch Agron Soil Sci. 69(10):1833–1845. doi: 10.1080/03650340.2022.2117303.
  • Jat SL, Parihar CM, Singh AK, Nayak HS, Meena BR, Kumar B, Parihar MD, Jat ML. 2019. Differential response from nitrogen sources with and without residue management under conservation agriculture on crop yields, water-use and economics in maize-based rotations. Field Crops Res. 236:96–110. doi: 10.1016/j.fcr.2019.03.017.
  • Kaschuk G, Alberton O, Hungria M. 2010. Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indications for improving sustainability. Soil Biol Biochem. 42(1):1–13. doi: 10.1016/j.soilbio.2009.08.020.
  • Kim SU, Lee HH, Moon SM, Han SM, Hong CO. 2021. Nitrous oxide emissions and maize yield as influenced by nitrogen fertilization and tillage operations in upland soil. Appl Biol Chem. 64(1):18. doi: 10.1186/s13765-021-00593-7.
  • Krafenbauer A, Wriessning K. 1995. Anthropogenic environmental pollution-the share of agriculture. Bodenkultur. 46(2):269–283. doi: 10.1016/0269-7491(95)90014-4.
  • Kumar K, Goh K. 2000. Crop residues and management practices: effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. Adv Agron. 68:197e319.
  • Lal R. 2005. World crop residues production and implications of its use as a biofuel. Environ Inter. 31(4):575–584. doi: 10.1016/j.envint.2004.09.005.
  • Li X, Sørensen P, Olesen JE, Petersen SO. 2016. Evidence for denitrification as main source of N2O emission from residue-amended soil. Soil Biol Biochem. 92:153–160. doi: 10.1016/j.soilbio.2015.10.008.
  • Mahal NK, Osterholz WR, Miguez FE, Poffenbarger HJ, Sawyer JE, Olk DC, Archontoulis SV, Castellano MJ. 2019. Nitrogen fertilizer suppresses mineralization of soil organic matter in maize agroecosystems. Front Ecol Evol. 7:59. doi: 10.3389/fevo.2019.00059.
  • Malhi SS, Nyborg M, Goddard T, Puurveen D. 2011. Long-term tillage, straw management and N fertilization effects on quantity and quality of organic C and N in a black chernozem soil. Nutr Cycl Agroecosyst. 90(2):227–241. doi: 10.1007/s10705-011-9424-6.
  • Ma R, Yu K, Xiao S, Liu S, Ciais P, Zou J. 2022. Data‐driven estimates of fertilizer‐induced soil NH3, NO and N2O emissions from croplands in China and their climate change impacts. Glob Change Biol. 28(3):1008–1022. doi: 10.1111/gcb.15975.
  • Ma ED, Zhang GB, Ma J, Xu H, Cai ZC, Yagi K. 2010. Effects of rice straw returning methods on N2O emission during wheat-growing season. Nutr Cycl Agroecosyst. 88(3):463–469. doi: 10.1007/s10705-010-9369-1.
  • Mazzetto AM, Styles D, Gibbons J, Arndt C, Misselbrook T, Chadwick D. 2020. Region-specific emission factors for Brazil increase the estimate of nitrous oxide emissions from nitrogen fertiliser application by 21%. Atmo Environ. 230:117506. doi: 10.1016/j.atmosenv.2020.117506.
  • Mulvaney RL, Khan SA, Ellsworth TR. 2009. Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production. J Environ Quality. 38(6):2295–2314. doi: 10.2134/jeq2008.0527.
  • Murphy J, Riley JP. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 27:31–36. doi: 10.1016/S0003-2670(00)88444-5.
  • Ottaiano L, Di Mola I, Di Tommasi P, Mori M, Magliulo V, Vitale L. 2020. Effects of irrigation on N2O emissions in a Maize Crop Grown on Different Soil Types in two contrasting seasons. Agric. 10(12):623. doi: 10.3390/agriculture10120623.
  • Parihar CM, Jat SL, Singh AK, Ghosh A, Rathore NS, Kumar B, Pradhan S, Majumdar K, Satyanarayana T, Jat ML, et al. 2017. Effects of precision conservation agriculture in a maize-wheat-mungbean rotation on crop yield, water use and radiation conversion under a semiarid agroecosystem. Agri Water Manag. 192:306–319. doi: 10.1016/j.agwat.2017.07.021.
  • Qin S, Wang Y, Hu C, Oenema O, Li X, Zhang Y, Dong W. 2012. Yield-scaled N2O emissions in a winter wheat–summer corn double-cropping system. Atm Environ. 55:240–244. doi: 10.1016/j.atmosenv.2012.02.077.
  • Ravishankara AR, Daniel JS, Portmann RW. 2009. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science. 326(5949):123–125. doi: 10.1126/science.1176985.
  • Rukshana F, Butterly CR, Baldock JA, Tang C. 2011. Model organic compounds differ in their effects on pH changes of two soils differing in initial pH. Biol Fert Soils. 47(1):51–62. doi: 10.1007/s00374-010-0498-0.
  • Russow R, Spott O, Stange CF. 2008. Evaluation of nitrate and ammonium as sources of NO and N2O emissions from black earth soils (Haplic Chernozem) based on 15N field experiments. Soil Biol Biochem. 40(2):380–391. doi: 10.1016/j.soilbio.2007.08.020.
  • Sander BO, Samson M, Buresh RJ. 2014. Methane and nitrous oxide emissions from flooded rice fields as affected by water and straw management between rice crops. Geoderma. 235–236:355–362. doi: 10.1016/j.geoderma.2014.07.020.
  • Scheer C, Fuchs K, Pelster DE, Butterbach-Bahl K. 2020. Estimating global terrestrial denitrification from measured N2O:(N2O+ N2) product ratios. Curr Opinion Environ Sustain. 47:72–80. doi: 10.1016/j.cosust.2020.07.005.
  • Tang C, Yu Q. 1999. Impact of chemical composition of legume residues and initial soil pH on pH change of a soil after residue incorporation. Plant Soil. 215(1):29–38. doi: 10.1023/A:1004704018912.
  • Van Groenigen JW, Velthof GL, Oenema O, Van Groenigen KJ, Van Kessel C. 2010. Towards an agronomic assessment of N2O emissions: a case study for arable crops. Eur J Soil Sci. 61(6):903–913. doi: 10.1111/j.1365-2389.2009.01217.x.
  • Vu QD, de Neergaard A, Tran TD, Hoang HTT, Vu VTK, Jensen LS. 2015. Greenhouse gas emissions from passive composting ofmanure and digestate with crop residues and biochar on smallscale livestock farms in Vietnam. Environ Technol. 36:2924–2935.
  • Walkley A, Black IA. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1):29–38. doi: 10.1097/00010694-193401000-00003.
  • Wang W, Lai DYF, Sardans J, Wang C, Datta A, Pan T, Zeng C, Bartrons M, Peñuelas J. 2015. Rice straw incorporation affects global warming potential differently in early vs. late cropping seasons in southeastern China. Field Crops Res. 181:42–51. doi: 10.1016/j.fcr.2015.07.007.
  • Wuebbles DJ. 2009. Nitrous oxide: no laughing matter. Science. 326(5949):56–57. doi: 10.1126/science.1179571.
  • Yang L, Muhammad I, Chi YX, Liu YX, Wang GY, Wang Y, Zhou XB. 2022. Straw return and nitrogen fertilization regulate soil greenhouse gas emissions and global warming potential in dual maize cropping system. Sci Total Environ. 853:158370. doi: 10.1016/j.scitotenv.2022.158370.
  • Yang Y, Ti C, Li F, Deng M, Yan X. 2010. Assessment of N2O, NOx and NH3 emissions from a typical rural catchment in Eastern China. Soil Sci Plant Nutr. 56(1):86–94. doi: 10.1111/j.1747-0765.2010.00459.x.
  • Yan F, Schubert S, Mengel K. 1996. Soil pH increase due to biological decarboxylation of organic anions. Soil Biol Biochem. 28(4–5):617–624. doi: 10.1016/0038-0717(95)00180-8.
  • Zhang HL, Bai XL, Xue JF, Chen ZD, Tang HM, Chen F, Bond-Lamberty B. 2013. Emissions of CH4 and N2O under different tillage systems from double-cropped paddy fields in Southern China. PLoS One. 8(6):e65277. doi: 10.1371/journal.pone.0065277.
  • Zhang Y, Liu J, Mu Y, Pei S, Lun X, Chai F. 2011. Emissions of nitrous oxide, nitrogen oxides and ammonia from a maize field in the north China plain. Atm Environ. 45(17):2956–2961. doi: 10.1016/j.atmosenv.2010.10.052.
  • Zhang P, Wei T, Wang HX, Wang M, Meng XP, Mou SW. 2015. Effects of straw mulch on soil water and winter wheat production in dryland farming. Sci Rep. 5(1):10725. doi: 10.1038/srep10725.