240
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Evaluation of travel delay and accident risk at moving work zones

, ORCID Icon &

References

  • Abdel-Aty, M., Shi, Q., Pande, A., & Yu, R. (2018). Real-time traffic safety and operation. In Safe mobility: Challenges, methodology and solutions, Howard House, Wagon Lane, Bingley BD16 1WA, UK: Emerald Publishing Limited (Vol. 11, pp. 175–204).
  • Arguea, D. F. (2006). Simulation-based approach to estimate the capacity of a temporary freeway work zone lane closure (Master Degree of Engineering Disertation). University of Florida, Gainesville, FL.
  • Atahan, A. O., Arslan, T., Ganster, W., & Edl, T. (2019). Development of a precast slim temporary concrete safety barrier STCSB 50 for work zone applications. Journal of Transportation Safety & Security, 11(3), 287–304. doi:10.1080/19439962.2017.1402837
  • Bagdadi, O. (2013). Estimation of the severity of safety critical events. Accident Analysis & Prevention, 50, 167–174. doi:10.1016/j.aap.2012.04.007
  • Bham, G. H., Mathur, D. R., Vallati, M. K., & Leu, M. C. (2009). Evaluation of Vehicle Mounted Attenuator (VMA) markings using a driving simulator for work zones for different times of the day. Proceedings of the 3rd Annual ISC Research Symposium, Rolla, MO.
  • Brown, H., Sun, C., & Cope, T. (2014). Evaluation of mobile work zone alarm systems. TRB 94th Annual Meeting Compendium of Papers, Washington, DC.
  • Chan, H. W. (2002). Traffic delay due to lane closure (Bachelor of Engineering Dissertation). Department of Civil Engineering, National University of Singapore, Singapore.
  • Chatterjee, I., Edara, P., Menneni, S., & Sun, C. (2009). Replication of work zone capacity values in a simulation model. Transportation Research Record: Journal of the Transportation Research Board, 2130(1), 138–148. doi:10.3141/2130-17
  • Chen, F., Chen, S., & Ma, X. (2018). Analysis of hourly crash likelihood using unbalanced panel data mixed logit model and real-time driving environmental big data. Journal of Safety Research, 65, 153–159. doi:10.1016/j.jsr.2018.02.010
  • Cheng, J., Li, G., & Chen, X. (2019). Developing a travel time estimation method of freeway based on floating car using random forests. Journal of Advanced Transportation, 2019, 1–13. doi:10.1155/2019/8582761
  • Chien, S. I., Goulias, D. G., Yahalom, S., & Chowdhury, S. M. (2002). Simulation-based estimates of delays at freeway work zones. Journal of Advanced Transportation, 36(2), 131–156. doi:10.1002/atr.5670360202
  • Edara, P., Rahmani, R., Brown, H., & Sun, C. (2017). Traffic impact assessment of moving work zone operations (Report DOT F 1700.7 (8-72)). Washington, DC: U.S. Department of Transportation.
  • Evans, L. (1994). Driver injury and fatality risk in two-car crashes versus mass ratio inferred using Newtonian mechanics. Accident Analysis & Prevention, 26(5), 609–616. doi:10.1016/0001-4575(94)90022-1
  • Fang, Y., Chen, J.-Z., & Peng, Z.-Y. (2013). The effect of moving bottlenecks on a two-lane traffic flow. Chinese Physics B, 22(10), 108902. doi:10.1088/1674-1056/22/10/108902
  • Fei, L., Zhu, H. B., & Han, X. L. (2016). Analysis of traffic congestion induced by the work zone. Physica A: Statistical Mechanics and Its Applications, 450(3), 497–505. doi:10.1016/j.physa.2016.01.036
  • Feng, Z., Yang, M., Zhang, W., Du, Y., & Bai, H. (2018). Effect of longitudinal slope of urban underpass tunnels on drivers’ heart rate and speed: A study based on a real vehicle experiment. Tunnelling and Underground Space Technology, 81, 525–533. doi:10.1016/j.tust.2018.08.032
  • FHWA. (2009). Manual on uniform traffic control devices for streets and highways. 2009 edition including revisions 1 and 2. Federal Highway Administration, Washington, DC.
  • He, F., Yan, X., Liu, Y., & Ma, L. (2016). A traffic congestion assessment method for urban road networks based on speed performance index. Procedia Engineering, 137, 425–433. doi:10.1016/j.proeng.2016.01.277
  • Heaslip, K., Jain, M., & Elefteriadou, L. (2011). Estimation of arterial work zone capacity using simulation. Transportation Letters, 3(2), 123–134. doi:10.3328/TL.2011.03.02.123-134
  • Juran, I., Prashker, J. N., Bekhor, S., & Ishai, I. (2009). A dynamic traffic assignment model for the assessment of moving bottlenecks. Transportation Research Part C: Emerging Technologies, 17(3), 240–258. doi:10.1016/j.trc.2008.10.003
  • Khan, S. M., Dey, K. C., & Chowdhury, M. (2017). Real-time traffic state estimation with connected vehicles. IEEE Transactions on Intelligent Transportation Systems, 18(7), 1687–1699. doi:10.1109/TITS.2017.2658664
  • Khattak, A. J., Khattak, A. J., & Council, F. M. (2002). Effects of work zone presence on injury and non-injury crashes. Accident Analysis and Prevention, 34(1), 19–29.
  • Laureshyn, A., Ceunynck, T. D., Karlsson, C., Svensson, A., & Daniels, S. (2017). In search of the severity dimension of traffic events: Extended delta-vas a traffic conflict indicator. Accident Analysis & Prevention, 98, 46–56. doi:10.1016/j.aap.2016.09.026
  • Li, Q. R., Pan, Y. X., Chen, L., & Cheng, C. G. (2011). Influence of the moving bottleneck on the traffic flow on expressway. Applied Mechanics and Materials, 97-98, 480–484. doi:10.4028/www.scientific.net/AMM.97-98.480
  • Li, Y., & Bai, Y. (2008). Development of crash severity index models for the measurement of work zone risk levels. Accident Analysis & Prevention, 40(5), 1724–1731. doi:10.1016/j.aap.2008.06.012
  • Liu, G., Ge, Y., Qiu, T. Z., & Soleymani, H. R. (2014). Optimization of snow plowing cost and time in an urban environment: A case study for the city of Edmonton. Canadian Journal of Civil Engineering, 41(7), 667–675. doi:10.1139/cjce-2013-0409
  • Ma, C., Hao, W., Xiang, W., & Yan, W. (2018). The impact of aggressive driving behavior on driver-injury severity at highway-rail grade crossings accidents. Journal of Advanced Transportation, 2018, 1–10. doi:10.1155/2018/9841498
  • Meng, Q., & Weng, J. (2011). An improved cellular automata model for heterogeneous work zone traffic. Transportation Research Part C: Emerging Technologies, 19(6), 1263–1275. doi:10.1016/j.trc.2011.02.011
  • Meng, Q., Weng, J., & Qu, X. (2010). A probabilistic quantitative risk assessment model for the long-term work zone crashes. Accident Analysis & Prevention, 42(6), 1866–1877. doi:10.1016/j.aap.2010.05.007
  • Oh, C., & Kim, T. (2010). Estimation of rear-end crash potential using vehicle trajectory data. Accident Analysis & Prevention, 42(6), 1888–1893. doi:10.1016/j.aap.2010.05.009
  • Ping, W. V., & Zhu, K. (2006). Evaluation of work zone capacity estimation models: A computer simulation study. The 6th Asia-Pacific Transportation Development Conference, 19th ICTPA Annual Meeting, Hong Kong, China.
  • Pursula, M. (1999). Simulation of traffic systems: An overview. Journal of Geographic Information and Decision Analysis, 3(1), 1–8.
  • Sze, N. N., & Song, Z. (2018). Factors contributing to injury severity in work zone related crashes in New Zealand. International Journal of Sustainable Transportation, 13, 148–154. doi:10.1080/15568318.2018.1452083
  • Weng, J., Du, G., Li, D., & Yu, Y. (2018). Time-varying mixed logit model for vehicle merging behavior in work zone merging areas. Accident Analysis & Prevention, 117, 328–339. doi:10.1016/j.aap.2018.05.005
  • Weng, J., Du, G., & Ma, L. (2016). Driver injury severity analysis for two work zone types. Proceedings of the Institution of Civil Engineers - Transport, 169(2), 97–106. doi:10.1680/jtran.14.00019
  • Weng, J., Feng, L., Du, G., & Xiong, H. (2019). Maximum likelihood regression tree with two-variable splitting scheme for subway incident delay. Transportmetrica A: Transport Science, 15(2), 1061–1080. doi:10.1080/23249935.2018.1564799
  • Weng, J., & Meng, Q. (2012). Rear-end crash potential estimation in the work zone merging areas. Journal of Advanced Transportation, 48(3), 238–249. doi:10.1002/atr.211
  • Wu, K., & Guler, S. I. (2019). Estimating the impacts of transit signal priority on intersection operations: A moving bottleneck approach. Transportation Research Part C: Emerging Technologies, 105, 346–358. doi:10.1016/j.trc.2019.06.003
  • Wu, Y. Y. (2000). Traffic delay at expressways due to lane blockage (Bachelor of Engineering Dissertation). Department of Civil Engineering, National University of Singapore, Singapore.
  • Yang, N., Schonfeld, P., & Kang, M. W. (2008). A hybrid methodology for freeway work-zone optimization with time constraints. Public Works Management and Policy, 13(3), 253–264.
  • Zhao, Z., Chen, W., Wu, X., Chen, P. C. Y., & Liu, J. (2017). LSTM network: A deep learning approach for short-term traffic forecast. IET Intelligent Transport Systems, 11(2), 68–75. doi:10.1049/iet-its.2016.0208

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.