122
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of distribution of toxic species of a fired train in ventilated tunnel

&

References

  • Association, N. F. P. (2007). Standard for fixed guideway transit and passenger rail systems. USA: NFPA.
  • Blomqvist, P., Hertzberg, T., Dalene, M., & Skarping, G. (2003). Isocyanates, aminoisocyanates and amines from fires—a screening of common materials found in buildings. Fire and Materials, 27(6), 275–294. doi:10.1002/fam.836
  • Blomqvist, P., Hertzberg, T., Tuovinen, H., Arrhenius, K., & Rosell, L. (2007). Detailed determination of smoke gas contents using a small‐scale controlled equivalence ratio tube furnace method. Fire and Materials, 31(8), 495–521. doi:10.1002/fam.946
  • Blomqvist, P., Persson, B., & Simonson, M. (2007). Fire emissions of organics into the atmosphere. Fire Technology, 43(3), 213–231. doi:10.1007/s10694-007-0011-y
  • Burning, E. (1993). F. Cabinet Making Scraps.
  • Capote, J. A., Alvear, D., Lázaro, M., & Espina, P. (2008). Heat release rate and computer fire modelling vs real‐scale fire tests in passenger trains. Fire and Materials, 32(4), 213–229. doi:10.1002/fam.962
  • Carvel, R. and Beard, A. (2005). The handbook of tunnel fire safety. London: Thomas Telford.
  • Chen, C-K., Zhu, C-X., Liu, X-y., & Yu, N-h. (2016). Experimental investigation on the effect of asymmetrical sealing on tunnel fire behavior. International Journal of Heat and Mass Transfer, 92, 55–65. doi:10.1016/j.ijheatmasstransfer.2015.08.079
  • Chow, W. K., Lam, K. C., Fong, N. K., Li, S. S., & Gao, Y. (2011). Numerical simulations for a typical train fire in china. Modelling and Simulation in Engineering, 2011, 1. doi:10.1155/2011/369470
  • Cosma, G., Ronchi, E., & Nilsson, D. (2016). Way-finding lighting systems for rail tunnel evacuation: A virtual reality experiment with Oculus Rift®. Journal of Transportation Safety & Security, 8(sup1), 101–117. doi:10.1080/19439962.2015.1046621
  • Crewe, R. J., Stec, A. A., Walker, R. G., Shaw, J. E. A., Hull, T. R., Rhodes, J., & Garcia-Sorribes, T. (2014). Experimental results of a residential house fire test on tenability: Temperature, smoke, and gas analyses. Journal of Forensic Sciences, 59(1), 139–154. doi:10.1111/1556-4029.12268
  • FireStatistics. Department for Communities and Local Government. London: FireStatistics. ISSN 978-1-4098-1769-7, 2007.
  • Hakimzadeh, B., & Talaee, M. R. (2018). Analysis of a new strategy for emergency ventilation and escape scenario in long railway tunnels in the fire mode. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 0954409718789541. doi:10.1177/0954409718789541
  • Hartzell, G. E. (1996). Overview of combustion toxicology. Toxicology, 115(1–3), 7–23. doi:10.1016/S0300-483X(96)03492-0
  • Heskestad, G. (1984). Engineering relations for fire plumes. Fire Safety Journal, 7(1), 25–32. doi:10.1016/0379-7112(84)90005-5
  • Hull, T. R., Stec, A. A., & Paul, K. (2008). Hydrogen chloride in fires. Fire Safety Science, 9, 665–676. doi:10.3801/IAFSS.FSS.9-665
  • Ingason, H., Li, Y. Z., & Lönnermark, A. (2014). Tunnel fire dynamics. Germany: Springer.
  • Ji, J., Gao, Z. H., Fan, C. G., & Sun, J. H. (2013). Large Eddy simulation of stack effect on natural smoke exhausting effect in urban road tunnel fires. International Journal of Heat and Mass Transfer, 66, 531–542. doi:10.1016/j.ijheatmasstransfer.2013.07.057
  • Ji, J., Wan, H., Li, K., Han, J., & Sun, J. (2015). A numerical study on upstream maximum temperature in inclined urban road tunnel fires. International Journal of Heat and Mass Transfer, 88, 516–526. doi:10.1016/j.ijheatmasstransfer.2015.05.002
  • Kozlowski, R., Wesolek, D., & Wladyka-Przybylak, M. (1999). Combustibility and toxicity of board materials used for interior fittings and decorations. Polymer Degradation and Stability, 64(3), 595–600. doi:10.1016/S0141-3910(98)00146-3
  • Krasyuk, A. M., Lugin, I. V., Alferova, E. L., & Kiyanitsa, L. A. (2016). Evaluation of ventilation flow charts for double-line subway tunnels without air chambers. Journal of Mining Science, 52(4), 740–751. doi:10.1134/S1062739116041154
  • Lee, S. R., & Ryou, H. S. (2006). A numerical study on smoke movement in longitudinal ventilation tunnel fires for different aspect ratio. Building and Environment, 41(6), 719–725. doi:10.1016/j.buildenv.2005.03.010
  • Li, Y-F., Bian, J., & Li, J-M. (2014). Research on smoke flow in a tunnel fire of subway system. Procedia Engineering, 71, 390–396. doi:10.1016/j.proeng.2014.04.056
  • Louppe, D., Oteng-Amoako, A., & Brink, M. (2008). Plant resources of tropical Africa. Timbers 1, PROTA Foundation, 7(1), 7010.
  • McGrattan, K. (2004). Fire dynamics simulator (version 5), technical reference guide. NIST Special Publication, 1018(5).
  • McPherson, M. J. (2012). Subsurface ventilation and environmental engineering. New York: Springer Science & Business Media.
  • Mounesan M., M. R. Talaee, and H. Molatefi. (2016). Numerical study of longitudinal ventilation system with extraction shaft for control of fire and smoke in tunnel.
  • Mounesan, M., Talaee, M., & Molatefi, H. (2016). Investigation of effective parameters on critical ventilation velocity in underground tunnels. Amirkabir Journal Of Mechanical Engineering (Amirkabir) 48(1), 17–20.
  • Park, B.-D., Kim, Y.-S., & Riedl, B. (2001). Effect of wood-fiber characteristics on medium density fiberboard (MDF) performance. Wood Science and Technology, 29(3), 27–35. doi:10.1007/s002260100095
  • Pflitsch, A. (2013). Natural ventilation as a factor controlling the dispersal of airborne toxins in subway systems in a disaster situation. Journal of Transportation Safety & Security, 5(1), 78–92. doi:10.1080/19439962.2012.721872
  • Se, C. M., Lee, E. W., & Lai, A. C. (2012). Impact of location of jet fan on airflow structure in tunnel fire. Tunnelling and Underground Space Technology, 27(1), 30–40. doi:10.1016/j.tust.2011.06.005
  • Stec, A. A., & Hull, T. R. (2011). Assessment of the fire toxicity of building insulation materials. Energy and Buildings, 43(2–3), 498–506. doi:10.1016/j.enbuild.2010.10.015
  • Stec, A. A., Hull, T. R., Purser, J. A., & Purser, D. A. (2009). Comparison of toxic product yields from bench-scale to ISO room. Fire Safety Journal, 44(1), 62–70. doi:10.1016/j.firesaf.2008.03.005
  • Tang, W., Hu, L., & Chen, L. (2013). Effect of blockage-fire distance on buoyancy driven back-layering length and critical velocity in a tunnel: An experimental investigation and global correlations. Applied Thermal Engineering, 60(1–2), 7–14. doi:10.1016/j.applthermaleng.2013.06.033
  • Tsai, K.-C., Chen, H.-H., & Lee, S.-K. (2010). Critical ventilation velocity for multi-source tunnel fires. Journal of Wind Engineering and Industrial Aerodynamics, 98(10–11), 650–660. doi:10.1016/j.jweia.2010.06.006
  • Vauquelin, O. (2008). Experimental simulations of fire-induced smoke control in tunnels using an “air–helium reduced scale model”: Principle, limitations, results and future. Tunnelling and Underground Space Technology, 23(2), 171–178. doi:10.1016/j.tust.2007.04.003
  • Wang, H.-Y. (2009). Prediction of soot and carbon monoxide production in a ventilated tunnel fire by using a computer simulation. Fire Safety Journal, 44(3), 394–406. doi:10.1016/j.firesaf.2008.08.007
  • Wang, F., & Wang, M. (2016). A computational study on effects of fire location on smoke movement in a road tunnel. Tunnelling and Underground Space Technology, 51, 405–413. doi:10.1016/j.tust.2015.09.008
  • White, N., Fire, D., & In, PT. (2010). Victoria University.
  • Wu, Y., & Bakar, M. A. (2000). Control of smoke flow in tunnel fires using longitudinal ventilation systems–a study of the critical velocity. Fire Safety Journal, 35(4), 363–390. doi:10.1016/S0379-7112(00)00031-X
  • Zhong, W., Lv, J., Li, Z., & Liang, T. (2013). A study of bifurcation flow of fire smoke in tunnel with longitudinal ventilation. International Journal of Heat and Mass Transfer, 67, 829–835. doi:10.1016/j.ijheatmasstransfer.2013.08.084
  • Zhou, T., Liu, J., Chen, Q., Chen, X., & Wang, J. (2017). Characteristics of smoke movement with forced ventilation by movable fan in a tunnel fire. Tunnelling and Underground Space Technology, 64, 95–102. doi:10.1016/j.tust.2017.01.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.