603
Views
2
CrossRef citations to date
0
Altmetric
Article

GIS-based assessment of pedestrian-vehicle accidents in terms of safety with four different ML models

ORCID Icon & ORCID Icon

References

  • Abay, K. A. (2013). Examining pedestrian-injury severity using alternative disaggregate models. Research in Transportation Economics, 43(1), 123–136. doi:10.1016/j.retrec.2012.12.002
  • Abellán, J., López, G., & De OñA, J. (2013). Analysis of traffic accident severity using decision rules via decision trees. Expert Systems with Applications, 40(15), 6047–6054. doi:10.1016/j.eswa.2013.05.027
  • Abellán, J., López, G., Garach, L., & Castellano, J. G. (2017). Extraction of decision rules via imprecise probabilities. International Journal of General Systems, 46(4), 313–331. doi:10.1080/03081079.2017.1312359
  • Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. Paper Presented at the Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. doi:10.1145/170035.170072
  • Al-Mousa, A., & Faza, A. (2019). A fuzzy-based customer response prediction model for a day-ahead dynamic pricing system. Sustainable Cities and Society, 44, 265–274. doi:10.1016/j.scs.2018.10.014
  • Alphan, H. (2003). Land‐use change and urbanization of Adana, Turkey. Land Degradation & Development, 14(6), 575–586. doi:10.1002/ldr.581
  • Amin, S. (2020). Backpropagation–Artificial Neural Network (BP-ANN): Understanding gender characteristics of older driver accidents in West Midlands of United Kingdom. Safety Science, 122, 104539. doi:10.1016/j.ssci.2019.104539
  • Attoh-Okine, N. O. (1999). Analysis of learning rate and momentum term in backpropagation neural network algorithm trained to predict pavement performance. Advances in Engineering Software, 30(4), 291–302. doi:10.1016/S0965-9978(98)00071-4
  • Bennet, S. A., & Yiannakoulias, N. (2015). Motor-vehicle collisions involving child pedestrians at intersection and mid-block locations. Accident; Analysis and Prevention, 78, 94–103. doi:10.1016/j.aap.2015.03.001
  • Bhat, C. R., Astroza, S., & Lavieri, P. S. (2017). A new spatial and flexible multivariate random-coefficients model for the analysis of pedestrian injury counts by severity level. Analytic Methods in Accident Research, 16, 1–22. doi:10.1016/j.amar.2017.05.001
  • Biswas, S., Chandra, S., & Ghosh, I. (2017). Effects of on-street parking in urban context: A critical review. Transportation in Developing Economies, 3(1), 10. doi:10.1007/s40890-017-0040-2
  • Cai, Q., Lee, J., Eluru, N., & Abdel-Aty, M. (2016). Macro-level pedestrian and bicycle crash analysis: Incorporating spatial spillover effects in dual state count models. Accident; Analysis and Prevention, 93, 14–22.
  • Casado-Sanz, N., & Guirao, B. (2018). Analysis of the impact of population ageing and territorial factors on crosstown roads safety: The Spanish case study. Transportation Research Procedia, 33, 283–290. doi:10.1016/j.trpro.2018.10.104
  • Casado-Sanz, N., Guirao, B., & Gálvez-Pérez, D. (2019). Population ageing and rural road accidents: Analysis of accident severity in traffic crashes with older pedestrians on Spanish crosstown roads. Research in Transportation Business & Management, 30, 100377. doi:10.1016/j.rtbm.2019.100377
  • Chai, C., Shi, X., Wong, Y. D., Er, M. J., & Gwee, E. T. M. (2016). Fuzzy logic-based observation and evaluation of pedestrians’ behavioral patterns by age and gender. Transportation Research Part F: Traffic Psychology and Behaviour, 40, 104–118. doi:10.1016/j.trf.2016.04.004
  • Chen, L., Chen, C., Ewing, R., McKnight, C. E., Srinivasan, R., & Roe, M. (2013). Safety countermeasures and crash reduction in New York City—Experience and lessons learned. Accident; Analysis and Prevention, 50, 312–322.
  • Chen, Z., & Fan, W. (2019a). Modeling pedestrian injury severity in pedestrian-vehicle crashes in rural and urban areas: Mixed logit model approach. Transportation Research Record, 2673(4), 1023–1034. doi:10.1177/0361198119842825
  • Chen, Z., & Fan, W. D. (2019b). A multinomial logit model of pedestrian-vehicle crash severity in North Carolina. International Journal of Transportation Science and Technology, 8(1), 43–52. doi:10.1016/j.ijtst.2018.10.001
  • Chen, P., & Zhou, J. (2016). Effects of the built environment on automobile-involved pedestrian crash frequency and risk. Journal of Transport & Health, 3(4), 448–456. doi:10.1016/j.jth.2016.06.008
  • Choi, S., Jeong, E., & Oh, C. (2013). Comparison of methodologies for characterizing pedestrian-vehicle collisions. Journal of Korean Society of Transportation, 31(6), 53–66. doi:10.7470/jkst.2013.31.6.053
  • Clifton, K. J., Burnier, C. V., & Akar, G. (2009). Severity of injury resulting from pedestrian–vehicle crashes: What can we learn from examining the built environment? Transportation Research Part D: Transport and Environment, 14(6), 425–436. doi:10.1016/j.trd.2009.01.001
  • Congiu, T., Sotgiu, G., Castiglia, P., Azara, A., Piana, A., Saderi, L., & Dettori, M. (2019). Built environment features and pedestrian accidents: An Italian retrospective study. Sustainability, 11(4), 1064. doi:10.3390/su11041064
  • Dai, D. (2012). Identifying clusters and risk factors of injuries in pedestrian–vehicle crashes in a GIS environment. Journal of Transport Geography, 24, 206–214. doi:10.1016/j.jtrangeo.2012.02.005
  • Dai, D., & Jaworski, D. (2016). Influence of built environment on pedestrian crashes: A network-based GIS analysis. Applied Geography, 73, 53–61. doi:10.1016/j.apgeog.2016.06.005
  • Das, D., Ojha, A. K., Kramsapi, H., Baruah, P. P., & Dutta, M. K. (2019). Road network analysis of Guwahati city using GIS. SN Applied Sciences, 1(8), 906. doi:10.1007/s42452-019-0907-4
  • Davis, S. J., Pugliese, B. J., & Barton, B. K. (2019). The intersection of pedestrian safety and multimodal perception. Transportation Research Part F: Traffic Psychology and Behaviour, 67, 205–216. doi:10.1016/j.trf.2019.11.002
  • de Oña, J., López, G., & Abellán, J. (2013). Extracting decision rules from police accident reports through decision trees. Accident; Analysis and Prevention, 50, 1151–1160.
  • Depaire, B., Wets, G., & Vanhoof, K. (2008). Traffic accident segmentation by means of latent class clustering. Accident; Analysis and Prevention, 40(4), 1257–1266.
  • Ding, C., Chen, P., & Jiao, J. (2018). Non-linear effects of the built environment on automobile-involved pedestrian crash frequency: A machine learning approach. Accident; Analysis and Prevention, 112, 116–126.
  • Diogenes, M. C., & Lindau, L. A. (2010). Evaluation of pedestrian safety at midblock crossings, Porto Alegre, Brazil. Transportation Research Record, 2193(1), 37–43. doi:10.3141/2193-05
  • Doygun, H. (2005). Urban development in Adana, Turkey, and its environmental consequences. International Journal of Environmental Studies, 62(4), 391–401. doi:10.1080/00207230500196153
  • Du, J., Qiao, F., Yu, L., & Gao, L. (2017). Planning of Campus Area Nighttime Public Transportation System Based on GIS and Operation Research.
  • Erdoğan, M., & Kaya, İ. (2020). A systematic approach to evaluate risks and failures of public transport systems with a real case study for bus rapid system in Istanbul. Sustainable Cities and Society, 53, 101951. doi:10.1016/j.scs.2019.101951
  • Evans, L., Lohse, N., & Summers, M. (2013). A fuzzy-decision-tree approach for manufacturing technology selection exploiting experience-based information. Expert Systems with Applications, 40(16), 6412–6426. doi:10.1016/j.eswa.2013.05.047
  • Ewing, R., & Dumbaugh, E. (2009). The built environment and traffic safety: A review of empirical evidence. Journal of Planning Literature, 23(4), 347–367. doi:10.1177/0885412209335553
  • Farahbakhsh, A., & Forghani, M. A. (2019). Sustainable location and route planning with GIS for waste sorting centers, case study: Kerman, Iran. Waste Management & Research, 37(3), 287–300.
  • Fogue, M., Garrido, P., Martinez, F. J., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2013). A novel approach for traffic accidents sanitary resource allocation based on multi-objective genetic algorithms. Expert Systems with Applications, 40(1), 323–336. doi:10.1016/j.eswa.2012.07.056
  • Fridman, L., Rothman, L., Hagel, B., & Howard, A. (2018). PW 0821 The effect of lowering residential speed limits to 30 km/h on child pedestrian injuries in Toronto, Canada. Injury Prevention, 24(Suppl 2), A61.
  • Gårder, P. E. (2004). The impact of speed and other variables on pedestrian safety in Maine. Accident; Analysis and Prevention, 36(4), 533–542. doi:10.1016/S0001-4575(03)00059-9
  • Gitelman, V., Balasha, D., Carmel, R., Hendel, L., & Pesahov, F. (2012). Characterization of pedestrian accidents and an examination of infrastructure measures to improve pedestrian safety in Israel. Accident Analysis & Prevention, 44(1), 63–73. doi:10.1016/j.aap.2010.11.017
  • Gjerde, H., Christophersen, A. S., Normann, P. T., & Mørland, J. (2013). Associations between substance use among car and van drivers in Norway and fatal injury in road traffic accidents: A case-control study. Transportation Research Part F: Traffic Psychology and Behaviour, 17, 134–144. doi:10.1016/j.trf.2012.11.004
  • Gu, Z., & Peng, B. (2021). Investigation into the built environment impacts on pedestrian crash frequencies during morning, noon/afternoon, night, and during peak hours: A case study in Miami County, Florida. Journal of Transportation Safety & Security, 13(9), 915–921. doi:10.1080/19439962.2019.1701164
  • Haleem, K., Alluri, P., & Gan, A. (2015). Analyzing pedestrian crash injury severity at signalized and non-signalized locations. Accident; Analysis and Prevention, 81, 14–23.
  • Hashimoto, S., Yoshiki, S., Saeki, R., Mimura, Y., Ando, R., & Nanba, S. (2016). Development and application of traffic accident density estimation models using kernel density estimation. Journal of Traffic and Transportation Engineering (English Edition), 3(3), 262–270. doi:10.1016/j.jtte.2016.01.005
  • Haykin, S. (1994). Neural networks: A comprehensive foundation. New York: MacMillan College Publishing Co.
  • Hess, P. M., Moudon, A. V., & Matlick, J. M. (2004). Pedestrian safety and transit corridors. Journal of Public Transportation, 7(2), 73–93. doi:10.5038/2375-0901.7.2.5
  • Hosseinpour, M., Yahaya, A. S., Ghadiri, S. M., & Prasetijo, J. (2013). Application of Adaptive Neuro-fuzzy Inference System for road accident prediction. KSCE Journal of Civil Engineering, 17(7), 1761–1772. doi:10.1007/s12205-013-0036-3
  • Hssina, B., Merbouha, A., Ezzikouri, H., & Erritali, M. (2014). A comparative study of decision tree ID3 and C4. 5. International Journal of Advanced Computer Science and Applications, 4(2), 13–19. doi:10.14569/SpecialIssue.2014.040203
  • Huang, H., Zhou, H., Wang, J., Chang, F., & Ma, M. (2017). A multivariate spatial model of crash frequency by transportation modes for urban intersections. Analytic Methods in Accident Research, 14, 10–21. doi:10.1016/j.amar.2017.01.001
  • Hu, W., & Cicchino, J. B. (2018). An examination of the increases in pedestrian motor-vehicle crash fatalities during 2009-2016. Journal of Safety Research, 67, 37–44. doi:10.1016/j.jsr.2018.09.009
  • Hu, L., Wu, X., Huang, J., Peng, Y., & Liu, W. (2020). Investigation of clusters and injuries in pedestrian crashes using GIS in Changsha. Safety Science, 127, 104710. doi:10.1016/j.ssci.2020.104710
  • Jahangeer, A. A., Anjana, S. S., & Das, V. R. (2020). A hierarchical modeling approach to predict pedestrian crash severity. In Transportation research (pp. 355–366). Singapore: Springer.
  • Kaaf, K. A., & Abdel-Aty, M. (2015). Transferability and calibration of Highway Safety Manual performance functions and development of new models for urban four-lane divided roads in Riyadh, Saudi Arabia. Transportation Research Record, 2515(1), 70–77. doi:10.3141/2515-10
  • Katanalp, B. Y., & Eren, E. (2020). The novel approaches to classify cyclist accident injury-severity: Hybrid fuzzy decision mechanisms. Accident; Analysis and Prevention, 144, 105590. doi:10.1016/j.aap.2020.105590
  • Katanalp, B. Y., Yildirim, Z. B., Karacasu, M., & İbrikci, T. (2019). Atık kömür katkılı asfalt betonu performans karakteristiklerinin yapay sinir ağları ve merkezi kompozit tasarım yöntemleri kullanılarak karşılaştırılması Mühendislik Bilimleri ve. Mühendislik Bilimleri ve Tasarım Dergisi, 7(3), 680–688. doi:10.21923/jesd.512018
  • Kaya, M., & Alhajj, R. (2006). Utilizing genetic algorithms to optimize membership functions for fuzzy weighted association rules mining. Applied Intelligence, 24(1), 7–15. doi:10.1007/s10489-006-6925-0
  • Khashei, M., Hamadani, A. Z., & Bijari, M. (2012). A novel hybrid classification model of artificial neural networks and multiple linear regression models. Expert Systems with Applications, 39(3), 2606–2620. doi:10.1016/j.eswa.2011.08.116
  • King, M. R., Carnegie, J. A., & Ewing, R. (2003). Pedestrian safety through a raised median and redesigned intersections. Transportation Research Record, 1828(1), 56–66. doi:10.3141/1828-07
  • Klir, G., & Yuan, B. (1995). Fuzzy sets and fuzzy logic theory and applications (1st ed.). London: Prentice-Hall International.
  • Kotikov, J. (2017). GIS-Modeling of multimodal complex road network and its traffic organization. Transportation Research Procedia, 20, 340–346. doi:10.1016/j.trpro.2017.01.043
  • Kraidi, R., & Evdorides, H. (2020). Pedestrian safety models for urban environments with high roadside activities. Safety Science, 130, 104847. doi:10.1016/j.ssci.2020.104847
  • Kumar, S., & Toshniwal, D. (2016). A data mining approach to characterize road accident locations. Journal of Modern Transportation, 24(1), 62–72. doi:10.1007/s40534-016-0095-5
  • Lan, Z., He, C., & Cai, M. (2020). Urban road traffic noise spatiotemporal distribution mapping using multisource data. Transportation Research Part D: Transport and Environment, 82, 102323. doi:10.1016/j.trd.2020.102323
  • Larimian, T., Zarabadi, Z. S. S., & Sadeghi, A. (2013). Developing a fuzzy AHP model to evaluate environmental sustainability from the perspective of Secured by Design scheme—A case study. Sustainable Cities and Society, 7, 25–36. doi:10.1016/j.scs.2012.10.001
  • Le, K. G., Liu, P., & Lin, L.-T. (2020). Traffic accident hotspot identification by integrating kernel density estimation and spatial autocorrelation analysis: A case study. International Journal of Crashworthiness, 1–11. doi:10.1080/13588265.2020.1826800
  • Lee, J., Abdel-Aty, M., Choi, K., & Huang, H. (2015). Multi-level hot zone identification for pedestrian safety. Accident; Analysis and Prevention, 76, 64–73.
  • Li, Y., & Fan, W. D. (2019). Modelling severity of pedestrian-injury in pedestrian-vehicle crashes with latent class clustering and partial proportional odds model: A case study of North Carolina. Accident; Analysis and Prevention, 131, 284–296. doi:10.1016/j.aap.2019.07.008
  • Li, Y., & Fan, W. (2020a). Mixed logit approach to modeling the severity of pedestrian-injury in pedestrian-vehicle crashes in North Carolina: Accounting for unobserved heterogeneity. Journal of Transportation Safety & Security, 1–22. doi:10.1080/19439962.2020.1821850
  • Li, Y., & Fan, W. (2020b). Modelling the severity of pedestrian injury in pedestrian—vehicle crashes in North Carolina: A partial proportional odds logit model approach. Journal of Transportation Safety & Security, 12(3), 358–379. doi:10.1080/19439962.2018.1483989
  • Li, D., Ranjitkar, P., Zhao, Y., Yi, H., & Rashidi, S. (2017). Analyzing pedestrian crash injury severity under different weather conditions. Traffic Injury Prevention, 18(4), 427–430.
  • López, G., Garach, L., Abellán, J., Castellano, J. G., & Mantas, C. J. (2014). Using imprecise probabilities to extract decision rules via decision trees for analysis of traffic accidents. Paper Presented at the International Conference on Rough Sets and Current Trends in Computing.
  • Ma, Z., Lu, X., Chien, S. I.-J., & Hu, D. (2018). Investigating factors influencing pedestrian injury severity at intersections. Traffic Injury Prevention, 19(2), 159–164. doi:10.1080/15389588.2017.1354371
  • Malyshkina, N. V., & Mannering, F. L. (2010). Empirical assessment of the impact of highway design exceptions on the frequency and severity of vehicle accidents. Accident; Analysis and Prevention, 42(1), 131–139. doi:10.1016/j.aap.2009.07.013
  • Mehran, K. (2008). Takagi-sugeno fuzzy modeling for process control. Industrial Automation, Robotics and Artificial Intelligence (EEE8005), 262.
  • Merlin, L. A., Guerra, E., & Dumbaugh, E. (2020). Crash risk, crash exposure, and the built environment: A conceptual review. Accident; Analysis and Prevention, 134, 105244.
  • Miranda-Moreno, L. F., Morency, P., & El-Geneidy, A. M. (2011). The link between built environment, pedestrian activity and pedestrian–vehicle collision occurrence at signalized intersections. Accident; Analysis and Prevention, 43(5), 1624–1634.
  • Mohamed, M. G., Saunier, N., Miranda-Moreno, L. F., & Ukkusuri, S. V. (2013). A clustering regression approach: A comprehensive injury severity analysis of pedestrian–vehicle crashes in New York, US and Montreal, Canada. Safety Science, 54, 27–37. doi:10.1016/j.ssci.2012.11.001
  • Mokhtarimousavi, S., Anderson, J. C., Azizinamini, A., & Hadi, M. (2020). Factors affecting injury severity in vehicle-pedestrian crashes: A day-of-week analysis using random parameter ordered response models and Artificial Neural Networks. International Journal of Transportation Science and Technology, 9(2), 100–115. doi:10.1016/j.ijtst.2020.01.001
  • Montella, A., Aria, M., D'Ambrosio, A., & Mauriello, F. (2011). Data-mining techniques for exploratory analysis of pedestrian crashes. Transportation Research Record, 2237(1), 107–116. doi:10.3141/2237-12
  • Montella, A., Aria, M., D'Ambrosio, A., & Mauriello, F. (2012). Analysis of powered two-wheeler crashes in Italy by classification trees and rules discovery. Accident; Analysis and Prevention, 49, 58–72. doi:10.1016/j.aap.2011.04.025
  • Moudon, A. V., Lin, L., Jiao, J., Hurvitz, P., & Reeves, P. (2011). The risk of pedestrian injury and fatality in collisions with motor vehicles, a social ecological study of state routes and city streets in King County, Washington. Accident; Analysis and Prevention, 43(1), 11–24. doi:10.1016/j.aap.2009.12.008
  • Mujalli, R. O., Garach, L., López, G., & Al-Rousan, T. (2019). Evaluation of injury severity for pedestrian–vehicle crashes in Jordan using extracted rules. Journal of Transportation Engineering, Part A: Systems, 145(7), 04019028. doi:10.1061/JTEPBS.0000244
  • Mukherjee, D., & Mitra, S. (2019). Impact of road infrastructure land use and traffic operational characteristics on pedestrian fatality risk: A case study of Kolkata. Transportation in Developing Economies, 5(2), 6. doi:10.1007/s40890-019-0077-5
  • Mukherjee, D., & Mitra, S. (2020a). A comprehensive study on factors influencing pedestrian signal violation behaviour: Experience from Kolkata City, India. Safety Science, 124, 104610. doi:10.1016/j.ssci.2020.104610
  • Mukherjee, D., & Mitra, S. (2020b). Identification of pedestrian risk factors using negative binomial model. Transportation in Developing Economies, 6(1), 4. doi:10.1007/s40890-019-0092-6
  • Narayanamoorthy, S., Paleti, R., & Bhat, C. R. (2013). On accommodating spatial dependence in bicycle and pedestrian injury counts by severity level. Transportation Research Part B: Methodological, 55, 245–264. doi:10.1016/j.trb.2013.07.004
  • Nauck, D., & Kruse, R. (1998). How the learning of rule weights affects the interpretability of fuzzy systems. Paper Presented at the 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No. 98CH36228).
  • Nikolić, M., Šelmić, M., Macura, D., & Ćalić, J. (2020). Bee colony optimization metaheuristic for fuzzy membership functions tuning. Expert Systems with Applications, 158, 113601. doi:10.1016/j.eswa.2020.113601
  • Nishimoto, T., Kubota, K., & Ponte, G. (2019). A pedestrian serious injury risk prediction method based on posted speed limit. Accident; Analysis and Prevention, 129, 84–93.
  • Nunn, S., & Newby, W. (2015). Landscapes of risk: The geography of fatal traffic collisions in Indiana, 2003 to 2011. The Professional Geographer, 67(2), 269–281. doi:10.1080/00330124.2014.935165
  • Olszewski, P., Szagała, P., Wolański, M., & Zielińska, A. (2015). Pedestrian fatality risk in accidents at unsignalized zebra crosswalks in Poland. Accident; Analysis and Prevention, 84, 83–91. doi:10.1016/j.aap.2015.08.008
  • Omid, M. (2011). Design of an expert system for sorting pistachio nuts through decision tree and fuzzy logic classifier. Expert Systems with Applications, 38(4), 4339–4347. doi:10.1016/j.eswa.2010.09.103
  • Pande, A., & Abdel-Aty, M. (2009). Market basket analysis of crash data from large jurisdictions and its potential as a decision support tool. Safety Science, 47(1), 145–154. doi:10.1016/j.ssci.2007.12.001
  • Pasanen, E. (1990). Driving speeds and pedestrian safety. Finland: Helsinki University.
  • Pour-Rouholamin, M., & Zhou, H. (2016). Investigating the risk factors associated with pedestrian injury severity in Illinois. Journal of Safety Research, 57, 9–17.
  • Prasannakumar, V., Vijith, H., Charutha, R., & Geetha, N. (2011). Spatio-temporal clustering of road accidents: GIS based analysis and assessment. Procedia - Social and Behavioral Sciences, 21, 317–325. doi:10.1016/j.sbspro.2011.07.020
  • Precup, R.-E., Sabau, M.-C., & Petriu, E. M. (2015). Nature-inspired optimal tuning of input membership functions of Takagi-Sugeno-Kang fuzzy models for anti-lock braking systems. Applied Soft Computing, 27, 575–589. doi:10.1016/j.asoc.2014.07.004
  • Pulugurtha, S. S., & Sambhara, V. R. (2011). Pedestrian crash estimation models for signalized intersections. Accident; Analysis and Prevention, 43(1), 439–446. doi:10.1016/j.aap.2010.09.014
  • Pyrialakou, V. D., Gkartzonikas, C., Gatlin, J. D., & Gkritza, K. (2020). Perceptions of safety on a shared road: Driving, cycling, or walking near an autonomous vehicle. Journal of Safety Research, 72, 249–258. doi:10.1016/j.jsr.2019.12.017
  • Qiao, Y., Keren, N., & Mannan, M. S. (2009). Utilization of accident databases and fuzzy sets to estimate frequency of HazMat transport accidents. Journal of Hazardous Materials, 167(1-3), 374–382.
  • Quinlan, J. R. (1987). Decision trees as probabilistic classifiers. Paper Presented at the Proceedings of the Fourth International Workshop on Machine Learning.
  • Quinlan, J. R. (1996). Improved use of continuous attributes in C4.5. Journal of Artificial Intelligence Research, 4, 77–90. doi:10.1613/jair.279
  • Quistberg, D. A., Howard, E. J., Ebel, B. E., Moudon, A. V., Saelens, B. E., Hurvitz, P. M., Curtin, J. E., & Rivara, F. P. (2015). Multilevel models for evaluating the risk of pedestrian–motor vehicle collisions at intersections and mid-blocks. Accident; Analysis and Prevention, 84, 99–111.
  • Raford, N., & Ragland, D. (2006). Pedestrian volume modeling for traffic safety and exposure analysis: The case of Boston, Massachusetts. Transportation Research Board 85th Annual Meeting Compendium of Papers CD-ROM, Paper # 06–1326.
  • Rezapour, M., Molan, A. M., & Ksaibati, K. (2020). Analyzing injury severity of motorcycle at-fault crashes using machine learning techniques, decision tree and logistic regression models. International Journal of Transportation Science and Technology, 9(2), 89–99. doi:10.1016/j.ijtst.2019.10.002
  • Sadeghi-Niaraki, A., Varshosaz, M., Kim, K., & Jung, J. J. (2011). Real world representation of a road network for route planning in GIS. Expert Systems with Applications, 38(10), 11999–12008. doi:10.1016/j.eswa.2010.12.123
  • Samaie, F., Meyar-Naimi, H., Javadi, S., & Feshki-Farahani, H. (2020). Comparison of sustainability models in development of electric vehicles in Tehran using fuzzy TOPSIS method. Sustainable Cities and Society, 53, 101912. doi:10.1016/j.scs.2019.101912
  • Santhosh, A., Sam, E., & Bindhu, B. K. (2020). Pedestrian accident prediction modelling—A case study in Thiruvananthapuram city. In T. Mathew, G. Joshi, N. Velaga, S. Arkatkar (Eds.), Transportation research. Lecture Notes in Civil Engineering (vol. 45, pp. 637–645). Singapore: Springer.
  • Scaini, C., Folch, A., Bolić, T., & Castelli, L. (2014). A GIS-based tool to support air traffic management during explosive volcanic eruptions. Transportation Research Part C: Emerging Technologies, 49, 19–31. doi:10.1016/j.trc.2014.09.020
  • Schneider, R. J., Diogenes, M. C., Arnold, L. S., Attaset, V., Griswold, J., & Ragland, D. R. (2010). Association between roadway intersection characteristics and pedestrian crash risk in Alameda County, California. Transportation Research Record, 2198(1), 41–51. doi:10.3141/2198-06
  • Schuurman, N., Walker, B. B., Swanlund, D., Amram, O., & Yanchar, N. L. (2020). Qualitative field observation of pedestrian injury hotspots: A mixed-methods approach for developing built-and socioeconomic-environmental risk signatures. International Journal of Environmental Research and Public Health, 17(6), 2066. doi:10.3390/ijerph17062066
  • Shafabakhsh, G. A., Famili, A., & Bahadori, M. S. (2017). GIS-based spatial analysis of urban traffic accidents: Case study in Mashhad, Iran. Journal of Traffic and Transportation Engineering (English Edition)), 4(3), 290–299. doi:10.1016/j.jtte.2017.05.005
  • Sheel, S., Varshney, T., & Varshney, R. (2007). Accelerated learning in MLP using adaptive learning rate with momentum coefficient. Paper Presented at the 2007 International Conference on Industrial and Information Systems. doi:10.1109/ICIINFS.2007.4579193
  • Sheykhfard, A., & Haghighi, F. (2019). Performance analysis of urban drivers encountering pedestrian. Transportation Research Part F: Traffic Psychology and Behaviour, 62, 160–174. doi:10.1016/j.trf.2018.12.019
  • Siddiqui, C., Abdel-Aty, M., & Choi, K. (2012). Macroscopic spatial analysis of pedestrian and bicycle crashes. Accident; Analysis and Prevention, 45, 382–391. doi:10.1016/j.aap.2011.08.003
  • Sivanandam, S. N., Sumathi, S., & Deepa, S. N. (2007). Introduction to fuzzy logic using MATLAB (Vol. 1). Berlin: Springer.
  • Song, L., Fan, W. D., Li, Y., & Wu, P. (2021). Exploring pedestrian injury severities at pedestrian-vehicle crash hotspots with an annual upward trend: A spatiotemporal analysis with latent class random parameter approach. Journal of Safety Research, 76, 184–196.
  • Stipancic, J., Miranda-Moreno, L., Strauss, J., & Labbe, A. (2020). Pedestrian safety at signalized intersections: Modelling spatial effects of exposure, geometry and signalization on a large urban network. Accident; Analysis and Prevention, 134, 105265.
  • Strauss, J., Miranda-Moreno, L. F., & Morency, P. (2014). Multimodal injury risk analysis of road users at signalized and non-signalized intersections. Accident; Analysis and Prevention, 71, 201–209.
  • Sun, M., Sun, X., & Shan, D. (2019). Pedestrian crash analysis with latent class clustering method. Accident; Analysis and Prevention, 124, 50–57. doi:10.1016/j.aap.2018.12.016
  • Taamneh, M., Taamneh, S., & Alkheder, S. (2017). Clustering-based classification of road traffic accidents using hierarchical clustering and artificial neural networks. International Journal of Injury Control and Safety Promotion, 24(3), 388–395.
  • Talaee, P. H. (2014). Multilayer perceptron with different training algorithms for streamflow forecasting. Neural Computing and Applications, 24(3–4), 695–703.
  • Tay, R., Choi, J., Kattan, L., & Khan, A. (2011). A multinomial logit model of pedestrian–vehicle crash severity. International Journal of Sustainable Transportation, 5(4), 233–249. doi:10.1080/15568318.2010.497547
  • Thill, J.-C. (2000). Geographic information systems for transportation in perspective. Transportation Research Part C: Emerging Technologies, 8(1-6), 3–12. doi:10.1016/S0968-090X(00)00029-2
  • Thomas, L., Lan, B., Sanders, R. L., Frackelton, A., Gardner, S., & Hintze, M. (2017). Changing the future?: Development and application of pedestrian safety performance functions to prioritize locations in Seattle, Washington. Transportation Research Record, 2659(1), 212–223. doi:10.3141/2659-23
  • Tulu, G. S., Washington, S., Haque, M. M., & King, M. J. (2015). Investigation of pedestrian crashes on two-way two-lane rural roads in Ethiopia. Accident; Analysis and Prevention, 78, 118–126.
  • Ukkusuri, S., Hasan, S., & Aziz, H. A. (2011). Random parameter model used to explain effects of built-environment characteristics on pedestrian crash frequency. Transportation Research Record, 2237(1), 98–106. doi:10.3141/2237-11
  • Ukkusuri, S., Miranda-Moreno, L. F., Ramadurai, G., & Isa-Tavarez, J. (2012). The role of built environment on pedestrian crash frequency. Safety Science, 50(4), 1141–1151. doi:10.1016/j.ssci.2011.09.012
  • Velloso, M. S., & Jacques, M. A. P. (2012). On-the-spot study of pedestrian crashes on Brazilian Federal District rural highways crossing urban areas. Transportation Research Part F: Traffic Psychology and Behaviour, 15(5), 588–599. doi:10.1016/j.trf.2012.06.001
  • Vignali, V., Pazzini, M., Ghasemi, N., Lantieri, C., Simone, A., & Dondi, G. (2020). The safety and conspicuity of pedestrian crossing at roundabouts: The effect of median refuge island and zebra markings. Transportation Research Part F: Traffic Psychology and Behaviour, 68, 94–104. doi:10.1016/j.trf.2019.12.007
  • Wang, Y., & Kockelman, K. M. (2013). A Poisson-lognormal conditional-autoregressive model for multivariate spatial analysis of pedestrian crash counts across neighborhoods. Accident; Analysis and Prevention, 60, 71–84.
  • Wang, H., Tan, D., Schwebel, D. C., Shi, L., & Miao, L. (2018). Effect of age on children's pedestrian behaviour: Results from an observational study. Transportation Research Part F: Traffic Psychology and Behaviour, 58, 556–565. doi:10.1016/j.trf.2018.06.039
  • Xie, S., Dong, N., Wong, S., Huang, H., & Xu, P. (2018). Bayesian approach to model pedestrian crashes at signalized intersections with measurement errors in exposure. Accident; Analysis and Prevention, 121, 285–294.
  • Xie, Z., & Yan, J. (2008). Kernel density estimation of traffic accidents in a network space. Computers, Environment and Urban Systems, 32(5), 396–406. doi:10.1016/j.compenvurbsys.2008.05.001
  • Xu, X., Luo, X., Ma, C., & Xiao, D. (2020). Spatial-temporal analysis of pedestrian injury severity with geographically and temporally weighted regression model in Hong Kong. Transportation Research Part F: Traffic Psychology and Behaviour, 69, 286–300. doi:10.1016/j.trf.2020.02.003
  • Xu, P., Xie, S., Dong, N., Wong, S. C., & Huang, H. (2019). Rethinking safety in numbers: Are intersections with more crossing pedestrians really safer? Injury Prevention, 25(1), 20–25.
  • Yahaya, M., Fan, W., Fu, C., Li, X., Su, Y., & Jiang, X. (2020). A machine-learning method for improving crash injury severity analysis: A case study of work zone crashes in Cairo. International Journal of Injury Control and Safety Promotion, 27(3), 266–275.
  • Yasmin, S., Eluru, N., Lee, J., & Abdel-Aty, M. (2016). Ordered fractional split approach for aggregate injury severity modeling. Transportation Research Record, 2583(1), 119–126. doi:10.3141/2583-15
  • Yasmin, S., Eluru, N., & Ukkusuri, S. V. (2014). Alternative ordered response frameworks for examining pedestrian injury severity in New York City. Journal of Transportation Safety & Security, 6(4), 275–300. doi:10.1080/19439962.2013.839590
  • Yu, H., & Wilamowski, B. M. (2011). Levenberg-Marquardt training. In B. M. Wilamowski, J. D. Irwin (Eds.), Industrial electronics handbook: intelligent systems. 2nd ed. (Vol. 5, no. 12, p. 1). Boca Raton (FL): Taylor & Francis.
  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. doi:10.1016/S0019-9958(65)90241-X
  • Zahran, E. M. M., Tan, S. J., Tan, E. H. A., Mohamad’Asri, P., Amirah’Atiqah Binti, N., Yap, Y. H., & Abdul Rahman, E. K. (2019). Spatial analysis of road traffic accident hotspots: Evaluation and validation of recent approaches using road safety audit. Journal of Transportation Safety & Security, 1–30. doi:10.1080/19439962.2019.1658673
  • Zhang, C., & Ivan, J. N. (2005). Effects of geometric characteristics on head-on crash incidence on two-lane roads in Connecticut. Transportation Research Record, 1908(1), 159–164. doi:10.1177/0361198105190800119

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.