3,012
Views
108
CrossRef citations to date
0
Altmetric
Reviews

Advances in high-resolution mass spectrometry based on metabolomics studies for food – a review

, &
Pages 1685-1708 | Received 25 May 2015, Accepted 15 Aug 2015, Published online: 14 Sep 2015

References

  • Abbots EJ, Coles B. 2013. Horsemeat-gate the discursive production of a neoliberal food scandal. Food Cult Soc. 16:535–550.
  • Abu-Reidah IM, Contreras MM, Arráez-Román D, Segura-Carretero A, Fernández-Gutiérrez A. 2013. Reversed-phase ultra-high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application. J Chromatogr A. 1313:212–227.
  • Andreyeva T, Long MW, Brownell KD. 2010. The impact of food prices on consumption: a systematic review of research on the price elasticity of demand for food. Am J Public Health. 100:216–222.
  • Berrueta LA, Alonso-Salces RM, Héberger K. 2007. Supervised pattern recognition in food analysis. J Chromatogr A. 1158:196–214.
  • Bylesjö M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J. 2006. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemom. 2006:341–351.
  • Cajka T, Danhelova H, Vavrecka A, Riddellova K, Kocourek V, Vacha F, Hajslova J. 2013. Evaluation of direct analysis in real time ionization-mass spectrometry (DART-MS) in fish metabolomics aimed to assess the response to dietary supplementation. Talanta. 115:263–270.
  • Cajka T, Danhelova H, Zachariasova M, Riddellova K, Hajslova J. 2013. Application of direct analysis in real time ionization-mass spectrometry (DART-MS) in chicken meat metabolomics aiming at the retrospective control of feed fraud. Metabolomics. 9:545–557.
  • Cajka T, Fiehn O. 2014. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Analyt Chem. 61:192–206.
  • Cajka T, Hajslova J, Pudil F, Riddellova K. 2009. Traceability of honey origin based on volatiles pattern processing by artificial neural networks. J Chromatogr A. 1216:1458–1462.
  • Cajka T, Riddellova K, Tomaniova M, Hajslova J. 2011. Ambient mass spectrometry employing a DART ion source for metabolomic fingerprinting/profiling: a powerful tool for beer origin recognition. Metabolomics. 7:500–508.
  • Camin F, Larcher R, Perini M, Bontempo L, Bertoldi D, Gagliano G, Nicolini G, Versini G. 2010. Characterisation of authentic Italian extra-virgin olive oils by stable isotope ratios of C, O and H and mineral composition. Food Chem. 118:901–909.
  • Castro-Puyana M, Herrero M. 2013. Metabolomics approaches based on mass spectrometry for food safety, quality and traceability. Trends Analyt Chem. 52:74–87.
  • Contreras-Gutiérrez PK, Hurtado-Fernández E, Gómez-Romero M, Hormaza JI, Carrasco-Pancorbo A, Fernández-Gutiérrez A. 2013. Determination of changes in the metabolic profile of avocado fruits (Persea americana) by two CE-MS approaches (targeted and non-targeted). Electrophoresis. 34:2928–2942.
  • Cuadros-Inostroza A, Giavalisco P, Hummel J, Eckardt A, Willmitzer L, Peña-Cortés H. 2010. Discrimination of wine attributes by metabolome analysis. Anal Chem. 82:3573–3580.
  • Cubero-Leon E, Peñalver R, Maquet A. 2014. Review on metabolomics for food authentication. Food Res Int. 60:95–107.
  • Daisa P, Hatzakisb E. 2013. Quality assessment and authentication of virgin olive oil by NMR spectroscopy: a critical review. Anal Chim Acta. 765:1–27.
  • De Paepe D, Valkenborg D, Coudijzer K, Noten B, Servaes K, De Loose M, Voorspoels S, Diels L, Van Droogenbroeck B. 2014. Thermal degradation of cloudy apple juice phenolic constituents. Food Chem. 162:176–185.
  • Delgado de la Torre MP, Priego-Capote F, Luque De Castro MD. 2015. Characterization and comparison of wine lees by liquid chromatography-mass spectrometry in high-resolution mode. J Agric Food Chem. 63:1116–1125.
  • Díaz R, Pozo OJ, Sancho JV, Hernández F. 2014. Metabolomic approaches for orange origin discrimination by ultra-high performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Chem. 157:84–93.
  • EC. 2002. Commission Decision 2002/657/EC of 12 of August 2002, concerning the performance of analytical methods and the interpretation of the results. Off J Eur Commun. L221:8–36.
  • Esslinger S, Riedl J, Fauhl-Hassek C. 2014. Potential and limitations of non-targeted fingerprinting for authentication of food in official control. Food Res Int. 60:189–204.
  • Fiehn O. 2002. Metabolomics - The link between genotypes and phenotypes. Plant Mol Biol. 48:155–171.
  • Forcisi S, Moritz F, Kanawati B, Tziotis D, Lehmann R, Schmitt-Kopplin P. 2013. Liquid chromatography-mass spectrometry in metabolomics research: mass analyzers in ultra high pressure liquid chromatography coupling. J Chromatogr A. 1292:51–65.
  • Gallardo JM, Ortea I, Carrera M. 2013. Proteomics and its applications for food authentication and food-technology research. Trends Analyt Chem. 52:135–141.
  • Gao W, Yang H, Qi L-W, Liu E-H, Ren M-T, Yan Y-T, Chen J, Li P. 2012. Unbiased metabolite profiling by liquid chromatography-quadrupole time-of-flight mass spectrometry and multivariate data analysis for herbal authentication: classification of seven Lonicera species flower buds. J Chromatogr A. 1245:109–116.
  • García-Cañas V, Simó C, Herrero M, Ibáñez E, Cifuentes A. 2012. Present and future challenges in food analysis: foodomics. Anal Chem. 84:10150–10159.
  • García-Villalba R, León C, Dinelli G, Segura-Carretero A, Fernández-Gutiérrez A, Garcia-Cañas V, Cifuentes A. 2008. Comparative metabolomic study of transgenic versus conventional soybean using capillary electrophoresis-time-of-flight mass spectrometry. J Chromatogr A. 1195:164–173.
  • Godzien J, Alonso-Herranz V, Barbas C, Armitage EG. 2015. Controlling the quality of metabolomics data: new strategies to get the best out of the QC sample. Metabolomics. 11:518–528.
  • Gossner CME, Schlundt J, Embarek PB, Hird S, Lo-Fo-Wong D, Beltran JJO, Teoh KN, Tritscher A. 2009. The melamine incident: implications for international food and feed safety. Environ Health Perspect. 117:1803–1808.
  • Gross JH. 2011. Mass spectrometry: a textbook. Heidelberg: Springer.
  • Hajslova J, Cajka T, Vaclavik L. 2011. Challenging applications offered by direct analysis in real time (DART) in food-quality and safety analysis. Trends Analyt Chem. 30:204–218.
  • Hernández F, Portolés T, Pitarch E, López FJ. 2011. Gas chromatography coupled to high-resolution time-of-flight mass spectrometry to analyze trace-level organic compounds in the environment, food safety and toxicology. Trends Analyt Chem. 30:388–400.
  • Hernández F, Sancho JV, Ibáñez M, Abad E, Portolés T, Mattioli L. 2012. Current use of high-resolution mass spectrometry in the environmental sciences. Anal Bioanal Chem. 403:1251–1264.
  • Herrero M, Simó C, García-Cañas V, Ibáñez E, Cifuentes A. 2012. Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom Rev. 31:49–69.
  • Hrbek V, Vaclavik L, Elich O, Hajslova J. 2014. Authentication of milk and milk-based foods by direct analysis in real time ionization-high resolution mass spectrometry (DART-HRMS) technique: a critical assessment. Food Control. 36:138–145.
  • Hurtado-Fernández E, Pacchiarotta T, Longueira-Suárez E, Mayboroda OA, Fernández-Gutiérrez A, Carrasco-Pancorbo A. 2013. Evaluation of gas chromatography-atmospheric pressure chemical ionization-mass spectrometry as an alternative to gas chromatography-electron ionization-mass spectrometry: avocado fruit as example. J Chromatogr A. 1313:228–244.
  • Hurtado-Fernández E, Pacchiarotta T, Mayboroda OA, Fernández-Gutiérrez A, Carrasco-Pancorbo A. 2014. Quantitative characterization of important metabolites of avocado fruit by gas chromatography coupled to different detectors (APCI-TOF MS and FID). Food Res Int. 62:801–811.
  • Hurtado-Fernández E, Pacchiarotta T, Mayboroda OA, Fernández-Gutiérrez A, Carrasco-Pancorbo A. 2015. Metabolomic analysis of avocado fruits by GC-APCI-TOF MS: effects of ripening degrees and fruit varieties. Anal Bioanal Chem. 407:547–555.
  • Ibáñez C, Simó C, García-Cañas V, Gómez-Martínez Á, Ferragut JA, Cifuentes A. 2012. CE/LC-MS multiplatform for broad metabolomic analysis of dietary polyphenols effect on colon cancer cells proliferation. Electrophoresis. 33:2328–2336.
  • Ioannidis JPA, Khoury MJ. 2011. Improving validation practices in ‘omics’ research. Science. 334:1230–1232.
  • Jandrić Z, Roberts D, Rathor MN, Abrahim JA, Islam M, Cannavan A. 2014. Assessment of fruit juice authenticity using UPLC-QToF MS: a metabolomics approach. Food Chem. 148:7–17.
  • Jumhawan U, Putri SP, Marwani Y, Marwani E, Bamba T, Fukusaki E. 2013. Selection of discriminant markers for authentication of asian palm civet coffee (Kopi Luwak): a metabolomics approach. J Agric Food Chem. 61:7994–8001.
  • Kaufmann A. 2014. Combining UHPLC and high-resolution MS: a viable approach for the analysis of complex samples? Trends Analyt Chem. 63:113–128.
  • Kim J, Choi JN, John KMM, Kusano M, Oikawa A, Saito K, Lee CH. 2012. GC-TOF-MS- and CE-TOF-MS-based metabolic profiling of cheonggukjang (fast-fermented bean paste) during fermentation and its correlation with metabolic pathways. J Agric Food Chem. 60:9746–9753.
  • Koek MM, Jellema RH, van der Greef J, Tas AC, Hankemeier T. 2011. Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. Metabolomics. 7:307–328.
  • Le Boucher C, Courant F, Jeanson S, Chereau S, Maillard M-B, Royer A-Lc, Thierry A, Dervilly-Pinel G, Le Bizec B, Lortal S. 2013. First mass spectrometry metabolic fingerprinting of bacterial metabolism in a model cheese. Food Chem. 141:1032–1040.
  • Le Boucher C, Courant F, Royer A-L, Jeanson S, Lortal S, Dervilly-Pinel G, Thierry A, Le Bizec B. 2015. LC–HRMS fingerprinting as an efficient approach to highlight fine differences in cheese metabolome during ripening. Metabolomics. doi:10.1007/s11306-014-0769-0.
  • Leon C, Rodriguez-Meizoso I, Lucio M, Garcia-Cañas V, Ibañez E, Schmitt-Kopplin P, Cifuentes A. 2009. Metabolomics of transgenic maize combining Fourier transform-ion cyclotron resonance-mass spectrometry, capillary electrophoresis-mass spectrometry and pressurized liquid extraction. J Chromatogr A. 1216:7314–7323.
  • Lockley AK, Bardsley RG. 2000. DNA-based methods for food authentication. Trends Food Sci Technol. 11:67–77.
  • Lopez-Sanchez P, De Vos RCH, Jonker HH, Mumm R, Hall RD, Bialek L, Leenman R, Strassburg K, Vreeken R, Hankemeier T, et al. 2015. Comprehensive metabolomics to evaluate the impact of industrial processing on the phytochemical composition of vegetable purees. Food Chem. 168:348–355.
  • Mattarucchi E, Stocchero M, Moreno-Rojas JM, Giordano G, Reniero F, Guillou C. 2010. Authentication of Trappist beers by LC-MS fingerprints and multivariate data analysis. J Agric Food Chem. 58:12089–12095.
  • Mie A, Laursen KH, Åberg KM, Forshed J, Lindahl A, Thorup-Kristensen K, Olsson M, Knuthsen P, Larsen EH, Husted S. 2014. Discrimination of conventional and organic white cabbage from a long-term field trial study using untargeted LC-MS-based metabolomics. Anal Bioanal Chem. 406:2885–2897.
  • Monge ME, Harris GA, Dwivedi P, Fernández FM. 2013. Mass spectrometry: recent advances in direct open air surface sampling/ionization. Chem Rev. 113:2269–2308.
  • Moore JC, Spink J, Lipp M. 2012. Development and application of a database of food ingredient fraud and economically motivated adulteration from 1980 to 2010. J Food Sci. 77:118–126.
  • Navarro M, Núñez O, Saurina J, Hernández-Cassou S, Puignou L. 2014. Characterization of fruit products by capillary zone electrophoresis and liquid chromatography using the compositional profiles of polyphenols: application to authentication of natural extracts. J Agric Food Chem. 62:1038–1046.
  • Novotná H, Kmiecik O, Gałązka M, Krtková V, Hurajová A, Schulzová V, Hallmann E, Rembiałkowska E, Hajšlová J. 2012. Metabolomic fingerprinting employing DART-TOF-MS for authentication of tomatoes and peppers from organic and conventional farming. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 29:1335–1346.
  • Oliveri P, Downey G. 2012. Multivariate class modeling for the verification of food-authenticity claims. Trends in Analyt Chem. 35:74–86.
  • Patti GJ, Yanes O, Siuzdak G. 2012. Innovation: metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol. 13:263–269.
  • Peterson AC, Balloon AJ, Westphall MS, Coon JJ. 2014. Development of a GC/quadrupole-orbitrap mass spectrometer, part II: new approaches for discovery metabolomics. Anal Chem. 86:10044–10051.
  • Peterson AC, Hauschild J-Pf, Quarmby ST, Krumwiede D, Lange O, Lemke RAS, Grosse-Coosmann F, Horning S, Donohue TJ, Westphall MS, et al. 2014. Development of a GC/quadrupole-orbitrap mass spectrometer, part I: design and characterization. Anal Chem. 86:10036–10043.
  • Ramautar R, Somsen GW, de Jong GJ. 2009. CE-MS in metabolomics. Electrophoresis. 30:276–291.
  • Risticevic S, Carasek E, Pawliszyn J. 2008. Headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric methodology for geographical origin verification of coffee. Anal Chem Acta. 617:72–84.
  • Rubert J, Lacina O, Fauhl-Hassek C, Hajslova J. 2014. Metabolic fingerprinting based on high-resolution tandem mass spectrometry: a reliable tool for wine authentication? Anal Bioanal Chem. 406:6791–6803.
  • Ruiz-Aracama A, Lommen A, Huber M, van de Vijver L, Hoogenboom R. 2012. Application of an untargeted metabolomics approach for the identification of compounds that may be responsible for observed differential effects in chickens fed an organic and a conventional diet. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 29:323–332.
  • SANCO. 2013. SANCO/12571/2013. Guidance document on analytical quality control and validation procedures for pesticide residues analysis in food and feed.
  • Scalbert A, Brennan L, Fiehn O, Hankemeier T, Kristal BS, van Ommen B, Pujos-Guillot E, Verheij E, Wishart D, Wopereis S. 2009. Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics. 5:435–458.
  • Soler C, Rubert J, Mañes J 2013. Proteomics in foods: principles and applications. Mass spectrometry applications. Springer US. Chapter 5, Mass Spectrometry Applications; p. 83–100.
  • Stanimirova I, Üstün B, Cajka T, Riddelova K, Hajslova J, Buydens LMC, Walczak B. 2010. Tracing the geographical origin of honeys based on volatile compounds profiles assessment using pattern recognition techniques. Food Chem. 118:171–176.
  • Sugimoto M, Kaneko M, Onuma H, Sakaguchi Y, Mori M, Abe S, Soga T, Tomita M. 2012. Changes in the charged metabolite and sugar profiles of pasteurized and unpasteurized Japanese sake with storage. J Agric Food Chem. 60:2586–2593.
  • Vaclavik L, Cajka T, Hrbek V, Hajslova J. 2009. Ambient mass spectrometry employing direct analysis in real time (DART) ion source for olive oil quality and authenticity assessment. Anal Chim Acta. 645:56–63.
  • Vaclavik L, Hrbek V, Cajka T, Rohlik B-A, Pipek P, Hajslova J. 2011. Authentication of animal fats using direct analysis in real time (DART) ionization-mass spectrometry and chemometric tools. J Agric Food Chem. 59:5919–5926.
  • Vaclavik L, Lacina O, Hajslova J, Zweigenbaum J. 2011. The use of high performance liquid chromatography-quadrupole time-of-flight mass spectrometry coupled to advanced data mining and chemometric tools for discrimination and classification of red wines according to their variety. Anal Chim Acta. 685:45–51.
  • Vaclavik L, Schreiber A, Lacina O, Cajka T, Hajslova J. 2011. Liquid chromatography-mass spectrometry-based metabolomics for authenticity assessment of fruit juices. Metabolomics. 8:793–803.
  • Venter A, Nefliu M, Graham Cooks R. 2008. Ambient desorption ionization mass spectrometry. Trends in Analyt Chem. 27:284–290.
  • Wishart DS. 2008. Metabolomics: applications to food science and nutrition research. Trends Food Sci Technol. 9:482–493.
  • Wong EH-K, Hanner RH. 2008. DNA barcoding detects market substitution in North American seafood. Food Res Int. 41:828–837.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.