2,817
Views
39
CrossRef citations to date
0
Altmetric
Articles

Can plant phenolic compounds reduce Fusarium growth and mycotoxin production in cereals?

ORCID Icon, , , , ORCID Icon, , , & ORCID Icon show all
Pages 2455-2470 | Received 12 Jul 2018, Accepted 03 Oct 2018, Published online: 30 Nov 2018

References

  • Abdel-Aal E-SM, Young JC, Rabalski I. 2006. Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J Agric Food Chem. 54:4696–4704.
  • Adom KK, Liu RH. 2002. Antioxidant activity of grains. J Agric Food Chem. 50:6182–6187.
  • Atanasova-Penichon V, Barreau C, Richard-Forget F. 2016. Antioxidant secondary metabolites in cereals: potential involvement in resistance to Fusarium and mycotoxin accumulation. Front Microbiol. 7.
  • Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw. 67:1–48.
  • Becher R, Hettwer U, Karlovsky P, Deising HB, Wirsel SGR. 2010. Adaptation of Fusarium graminearum to tebuconazole yielded descendants diverging for levels of fitness, fungicide resistance, virulence, and mycotoxin production. Phytopathol. 100:444–453.
  • Bilska K, Stuper-Szablewska K, Kulik T, Buśko M, Załuski D, Jurczak S, Perkowski J. 2018. Changes in phenylpropanoid and trichothecene production by Fusarium culmorum and F. graminearum sensu stricto via exposure to flavonoids. Toxins. 10:110.
  • Bollina V, Kushalappa AC. 2011. In vitro inhibition of trichothecene biosynthesis in Fusarium graminearum by resistance-related endogenous metabolites identified in barley. Mycology. 2:291–296.
  • Boutigny AL, Atanasova-Penichon V, Benet M, Barreau C, Richard-Forget F. 2010. Natural phenolic acids from wheat bran inhibit Fusarium culmorum trichothecene biosynthesis in vitro by repressing Tri gene expression. Eur J Plant Pathol. Jun. 127:275–286.
  • Boutigny AL, Barreau C, Atanasova-Penichon V, Verdal-Bonnin MN, Pinson-Gadais L, Richard-Forget F. 2009. Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and Tri gene expression in Fusarium liquid cultures. Mycol Res. 113:746–753.
  • Boutigny A-L, Richard-Forget F, Barreau C. 2008. Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes. Eur J Plant Pathol. 121:411–423.
  • Box GE, Cox DR. 1964. An analysis of transformations. J Royal Stat Soc Ser B (Methodological). 26:211–252.
  • Buchner N, Krumbein A, Rohn S, Kroh LW. 2006. Effect of thermal processing on the flavonols rutin and quercetin. Rapid Commun Mass Spectrom. 20:3229–3235.
  • Clemens R, van Klinken BJ-W. 2014. Oats, more than just a whole grain: an introduction. Br J Nutr. 112:S1–S3.
  • Core Team R. 2015. R: A language and environment for statistical computing. R foundation for statistical computing. http://www.R-project.org/.
  • Desjardins AE. 2006. Fusarium mycotoxins - chemistry, genetics, and biology. St. Paul (Minnesota): APS Press.
  • Dykes L, Rooney LW. 2007. Phenolic compounds in cereal grains and their health benefits. Cereal Foods World. 52:105–111.
  • Edwards S, Barrier-Guillot B, Clasen PE, Hietaniemi V, Pettersson H. 2009. Emerging issues of HT-2 and T-2 toxins in European cereal production. WMJ. 2:173–179.
  • Emmons CL, Peterson DM, Paul GL. 1999. Antioxidant capacity of oat (Avena sativa L.) extracts. 2. In vitro antioxidant activity and contents of phenolic and tocol antioxidants. J Agric Food Chem.. 47:4894–4898.
  • Ferrochio L, Cendoya E, Farnochi MC, Massad W, Ramirez ML. 2013. Evaluation of ability of ferulic acid to control growth and fumonisin production of Fusarium verticillioides and Fusarium proliferatum on maize based media. Int J Food Microbiol. 167:215–220.
  • Ferruz E, Atanasova‐Pénichon V, Bonnin‐Verdal MN, Marchegay G, Pinson‐Gadais L, Ducos C, Lorán S, Ariño A, Barreau C, Richard‐Forget F. 2016. Effects of phenolic acids on the growth and production of T-2 and HT-2 toxins by Fusarium langsethiae and F. sporotrichioides. Molecules. 21:449.
  • Gauthier L, Atanasova-Penichon V, Chéreau S, Richard-Forget F. 2015. Metabolomics to decipher the chemical defense of cereals against Fusarium graminearum and deoxynivalenol accumulation. Int J Mol Sci. 16:24839–24872.
  • Hofgaard IS, Aamot HU, Torp T, Jestoi M, Lattanzio VMT, Klemsdal SS, Waalwijk C, Van der Lee T, Brodal G. 2016. Associations between Fusarium species and mycotoxins in oats and spring wheat from farmers’ fields in Norway over a six-year period. WMJ. 9:365–378.
  • Hope R, Aldred D, Magan N. 2005. Comparison of the effect of environmental factors on deoxynivalenol production by Fusarium culmorum and F. graminearum on wheat grain. Lett Appl Microbiol. 40:295–300.
  • Kadiri O. 2017. A review on the status of the phenolic compounds and antioxidant capacity of the flour: effects of cereal processing. Int J Food Prop. 20:798–809.
  • Kalinova J, Radova S. 2009. Effects of rutin on the growth of Botrytis cinerea, Alternaria alternata and Fusarium solani. Acta Phytopathol Entomol Hung. 44:39–47.
  • Kokkonen M, Jestoi M, Laitila A. 2012. Mycotoxin production of Fusarium langsethiae and Fusarium sporotrichioides on cereal-based substrates. Mycotoxin Res. 28:25–35.
  • Kulik T, Stuper-Szablewska K, Bilska K, Buśko M, Ostrowska-Kołodziejczak A, Załuski D, Perkowski J. 2017. Sinapic acid affects phenolic and trichothecene profiles of F. culmorum and F. graminearum sensu stricto. Toxins. 9:264.
  • Lattanzio V, Lattanzio VM, Cardinali A. 2006. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem: Adv Res. 661:23–67.
  • Lenth RV. 2016. Least-squares means: the R package lsmeans. J Stat Softw. 69:1–33.
  • Magan N, Hope R, Colleate A, Baxter ES. 2002. Relationship between growth and mycotoxin production by Fusarium species, biocides and environment. Eur J Plant Pathol. 108:685–690.
  • Malachova A, Sulyok M, Beltrán E, Berthiller F, Krska R. 2014. Optimization and validation of a quantitative liquid chromatography–tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices. J Chromatogr. 1362:145–156.
  • Masisi K, Beta T, Moghadasian MH. 2016. Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies. Food Chem. 196:90–97.
  • Mattila P, Pihlava JM, Hellström J. 2005. Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J Agric Food Chem. 53:8290–8295.
  • McKeehen JD, Busch RH, Fulcher RG. 1999. Evaluation of wheat (Triticum aestivum L.) phenolic acids during grain development and their contribution to Fusarium resistance. J Agric Food Chem. 47:1476–1482.
  • Medentsev A, Akimenko V. 1998. Naphthoquinone metabolites of the fungi. Phytochem. 47:935–959.
  • Mohamed MS, Saleh AM, Abdel-Farid IB, El-Naggar SA. 2017. Growth, hydrolases and ultrastructure of Fusarium oxysporum as affected by phenolic rich extracts from several xerophytic plants. Pestic Biochem Physiol. 141:57–64.
  • Osborne LE, Stein JM. 2007. Epidemiology of Fusarium head blight on small-grain cereals. Int J Food Microbiol. 119:103–108.
  • Pani G, Dessì A, Dallocchio R, Scherm B, Azara E, Delogu G, Migheli Q. 2016. Natural phenolic inhibitors of trichothecene biosynthesis by the wheat fungal pathogen Fusarium culmorum: A computational insight into the structure-activity relationship. PloS one. 11:e0157316.
  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC 2016. {nlme}: linear and nonlinear mixed effects models. https://CRAN.R-project.org/package=nlme.
  • Ponts N, Pinson-Gadais L, Barreau C, Richard-Forget F, Ouellet T. 2007. Exogenous H2O2 and catalase treatments interfere with Tri genes expression in liquid cultures of Fusarium graminearum. FEBS Lett. 581:443–447.
  • Ponts N, Pinson-Gadais L, Boutigny A-L, Barreau C, Richard-Forget F. 2011. Cinnamic-derived acids significantly affect Fusarium graminearum growth and in vitro synthesis of type B trichothecenes. Phytopathol. 101:929–934.
  • Ponts N, Pinson-Gadais L, Verdal-Bonnin M, Barreau C, Richard-Forget F. 2006. Accumulation of deoxynivalenol and its 15-acetylated form is significantly modulated by oxidative stress in liquid cultures of Fusarium graminearum. FEMS Microbiol Lett. 258:102–107.
  • Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D, Ripley MB 2013. Package ‘mass’. http://www.stats.ox.ac.uk/pub/MASS4/
  • Schöneberg T, Jenny E, Wettstein FE, Bucheli TD, Mascher F, Bertossa M, Musa T, Seifert K, Gräfenhan T, Keller B, Vogelgsang S. 2018a. Occurrence of Fusarium species and mycotoxins in Swiss oats - Impact of cropping factors. Eur J Agron. 92:123–132.
  • Schöneberg T, Martin C, Wettstein FE, Bucheli TD, Mascher F, Bertossa M, Musa T, Keller B, Vogelgsang S. 2016. Fusarium and mycotoxin spectra in Swiss barley are affected by various cropping techniques. Food Addit Contam Part A. 33:1608–1619.
  • Schöneberg T, Musa T, Forrer H-R, Mascher F, Bucheli TD, Bertossa M, Keller B, Vogelgsang S. 2018b. Infection conditions of Fusarium graminearum in barley are variety specific and different from those in wheat. Eur J Plant Pathol. 151:975–989.
  • Skadhauge B, Thomsen KK, Von Wettstein D. 1997. The role of the barley testa layer and its flavonoid content in resistance to Fusarium infections. Hereditas. 126:147–160.
  • Stuper-Szablewska K, Kurasiak-Popowska D, Nawracała J, Perkowski J. 2017. Response of non-enzymatic antioxidative mechanisms to stress caused by infection with Fusarium fungi and chemical protection in different wheat genotypes. Chem Ecol. 33:949–962.
  • Tukey JW. 1949. Comparing individual means in the analysis of variance. Biom. 5:99–114.
  • Van Hung P. 2016. Phenolic compounds of cereals and their antioxidant capacity. Crit Rev Food Sci Nutr. 56:25–35.
  • Vogelgsang S, Sulyok M, Bänziger I, Krska R, Schuhmacher R, Forrer HR. 2008. Effect of fungal strain and cereal substrate on the in vitro mycotoxin production by Fusarium poae and Fusarium avenaceum. Food Addit Contam. 25:745–757.
  • Wu HS, Luo J, Raza W, Liu YX, Gu MA, Chen G, Hu XF, Wang JH, Mao ZS, Shen QR. 2010. Effect of exogenously added ferulic acid on in vitro Fusarium oxysporum f. sp. niveum. Scientia Horticulturae. 124:448–453.
  • Zhao Y-M, Cheng Y-X, Ma Y-N, Chen C-J, F-R X, Dong X. 2018. Role of phenolic acids from the rhizosphere soils of Panax notoginseng as a double-edge sword in the occurrence of root-rot disease. Molecules. 23:819.