1,045
Views
37
CrossRef citations to date
0
Altmetric
Articles

Rapid detection of multiple organophosphorus pesticides (triazophos and parathion-methyl) residues in peach by SERS based on core-shell bimetallic Au@Ag NPs

, &
Pages 762-778 | Received 04 Dec 2018, Accepted 04 Feb 2019, Published online: 03 Apr 2019

References

  • Aswathy B, Sony G, Gopchandran KG. 2014. Shell thickness-dependent plasmon coupling and creation of SERS hot spots in Au@ Ag core-shell nanostructures. Plasmonics. 9(6):1323–1331.
  • Bae SJ, Lee CR, Choi IS, Hwang CS, Gong MS, Kim K, Joo SW. 2002. Adsorption of 4-biphenylisocyanide on gold and silver nanoparticle surfaces: surface-enhanced Raman scattering study. J Phys Chem B. 106(28):7076–7080.
  • Berijani S, Assadi Y, Anbia M, Hosseini MRM, Aghaee E. 2006. Dispersive liquid–liquid microextraction combined with gas chromatography-flame photometric detection: very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. J Chromatogr A. 1123(1):1–9.
  • Boca SC, Farcau C, Astilean S. 2009. The study of Raman enhancement efficiency as function of nanoparticle size and shape. Nucl Instrum Methods Phys Res Sect B. 267(2):406–410.
  • CAC. 2013a. Pesticides MRLs. Codex Alimentarius Commission. [accessed 2018 May 16]. http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticide-detail/en/?p_id=143.
  • CAC. 2013b. Pesticides MRLs. Codex Alimentarius Commission; [accessed 2018 May 16]. http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticide-detail/en/?p_id=59.
  • Calderón-Preciado D, Jiménez-Cartagena C, Peñuela G, Bayona JM. 2009. Development of an analytical procedure for the determination of emerging and priority organic pollutants in leafy vegetables by pressurized solvent extraction followed by GC–MS determination. Anal Bioanal Chem. 394(5):1319–1327.
  • Chen J, Huang Y, Kannan P, Zhang L, Lin Z, Zhang J, Guo L. 2016. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal Chem. 88(4):2149–2155.
  • Cheng JH, Sun D-W. 2015. Rapid and non-invasive detection of fish microbial spoilage by visible and near infrared hyperspectral imaging and multivariate analysis. LWT-Food Sci Technol. 62(2):1060–1068.
  • Cheng JH, Sun D-W, Pu H. 2016a. Combining the genetic algorithm and successive projection algorithm for the selection of feature wavelengths to evaluate exudative characteristics in frozen–thawed fish muscle. Food Chem. 197:855–863.
  • Cheng W, Sun D-W, Cheng J-H. 2016b. Pork biogenic amine index (BAI) determination based on chemometric analysis of hyperspectral imaging data. LWT-Food Sci Technol. 73:13–19. doi:10.1016/j.lwt.2016.05.031
  • Cheng W, Sun D-W, Pu H, Liu Y. 2016c. Integration of spectral and textural data for enhancing hyperspectral prediction of K value in pork meat. LWT-Food Sci Technol. 72:322–329. doi:10.1016/j.lwt.2016.05.003
  • Cheng W, Sun D-W, Pu H, Wei Q. 2017. Chemical spoilage extent traceability of two kinds of processed pork meats using one multispectral system developed by hyperspectral imaging combined with effective variable selection methods. Food Chem. 221:1989–1996. doi:10.1016/j.foodchem.2016.11.093
  • Cheng W, Sun D-W, Pu H, Wei Q. 2018. Heterospectral two-dimensional correlation analysis with near-infrared hyperspectral imaging for monitoring oxidative damage of pork myofibrils during frozen storage. Food Chem. 248:119–127. doi:10.1016/j.foodchem.2017.12.050
  • Dai Q, Cheng J-H, Sun D-W, Zhu Z, Pu H. 2016. Prediction of total volatile basic nitrogen contents using wavelet features from visible/near-infrared hyperspectral images of prawn (Metapenaeus ensis). Food Chem. 197:257–265. doi:10.1016/j.foodchem.2015.10.073
  • Du CJ, Sun D-W. 2005. Pizza sauce spread classification using colour vision and support vector machines. J Food Eng. 66:137–145.
  • Du P, Jin M, Zhang C, Chen G, Cui X, Zhang Y, She Y. 2018. Highly sensitive detection of triazophos pesticide using a novel bio-bar-code amplification competitive immunoassay in a micro well plate-based platform. Sens Actuators B Chem. 256:457–464.
  • Economou A, Botitsi H, Antoniou S, Tsipi D. 2009. Determination of multiclass pesticides in wines by solid-phase extraction and liquid chromatography tandem mass spectrometry. J Chromatogr A. 1216(31):5856–5867.
  • Fan M, Cheng F, Wang C, Gong Z, Tang C, Man C, Brolo AG. 2015a. SERS optrode as a “fishing rod” to direct pre-concentrate analytes from superhydrophobic surfaces. Chem Commun. 51(10):1965–1968.
  • Fan Y, Lai K, Rasco BA, Huang Y. 2014. Analyses of phosmet residues in apples with surface-enhanced Raman spectroscopy. Food Control. 37:153–157.
  • Fan Y, Lai K, Rasco BA, Huang Y. 2015b. Determination of carbaryl pesticide in Fuji apples using surface-enhanced Raman spectroscopy coupled with multivariate analysis. LWT-Food Sci Technol. 60(1):352–357.
  • Fang H, Zhang X, Zhang SJ, Liu L, Zhao YM, Xu HJ. 2015. Ultrasensitive and quantitative detection of paraquat on fruits skins via surface-enhanced Raman spectroscopy. Sens Actuators B Chem. 213:452–456.
  • Fowler SM, Wood BR, Ottoboni M, Baldi G, Wynn P, van de Ven R, Hopkins DL. 2015. Imaging of intact ovine m. Semimembranosus by confocal Raman microscopy. Food Bioprocess Technol.. 11:2279–2286. doi:10.1007/s11947-015-1574-0
  • Frens G. 1973. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Phys Sci. 241(105):20.
  • Fu G, Sun D-W, Pu H, Wei Q. 2019. Fabrication of gold nanorods for SERS detection of thiabendazole in apple. Talanta. 195:841–849. doi:10.1016/j.talanta.2018.11.114
  • Fu L, Liu X, Hu J, Zhao X, Wang H, Wang X. 2009. Application of dispersive liquid–liquid microextraction for the analysis of triazophos and carbaryl pesticides in water and fruit juice samples. Anal Chim Acta. 632(2):289–295.
  • Güzel R, Üstündağ Z, Ekşi H, Keskin S, Taner B, Durgun ZG, Solak AO. 2010. Effect of Au and Au@ Ag core–shell nanoparticles on the SERS of bridging organic molecules. J Colloid Interface Sci. 351(1):35–42.
  • Hassan AH, Moura SL, Ali FH, Moselhy WA, Sotomayor MDPT, Pividori MI. 2018. Electrochemical sensing of methyl parathion on magnetic molecularly imprinted polymer. Biosens Bioelectron. 118:181–187.
  • He H-J, Sun D-W. 2015. Microbial evaluation of raw and processed food products by visible/infrared, Raman and fluorescence spectroscopy. Trends Food Sci Technol. 46:199–210. doi:10.1016/j.tifs.2015.10.004
  • Jackman P, Sun D-W, Allen P. 2011. Automatic segmentation of beef longissimus dorsi muscle and marbling by an adaptable algorithm. Meat Sci. 83(2):187–194.
  • Jeanmaire DL, Van Duyne RP. 1977. Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem Interfacial Electrochem. 84(1):1–20.
  • Jiang J, Gao JM, Guo JS, Zhou QH, Liu XH, Ouyang WJ, He SX. 2016. Identification and analysis of triphenyltin chloride with surface enhanced Raman scattering spectroscopy. Chemosphere. 161:96–103.
  • Jiang J, Zhu L, Zou J, Ou-Yang L, Zheng A, Tang H. 2015. Micro/nano-structured graphitic carbon nitride–ag nanoparticle hybrids as surface-enhanced Raman scattering substrates with much improved long-term stability. Carbon. 87:193–205.
  • Jiang Y, Sun D-W, Pu H, Wei Q. 2018. Surface enhanced Raman spectroscopy (SERS): a novel reliable technique for rapid detection of common harmful chemical residues. Trends Food Sci Technol. 75:10–22. doi:10.1016/j.tifs.2018.02.020
  • Jiang Y, Sun D-W, Pu H, Wei Q. 2019. Ultrasensitive analysis of Kanamycin residue in milk by SERS-based aptasensor. Talanta. 197:151–158. doi:10.1016/j.talanta.2019.01.015
  • Jin D, Xu Q, Yu L, Mao A, Hu X. 2016. A novel sensor for the detection of acetamiprid in vegetables based on its photocatalytic degradation compound. Food Chem. 194:959–965.
  • Joo SW, Chung TD, Jang WC, Gong MS, Geum N, Kim K. 2002. Surface-enhanced Raman scattering of 4-cyanobiphenyl on gold and silver nanoparticle surfaces. Langmuir. 18(23):8813–8816.
  • Lai K, Zhai F, Zhang Y, Wang X, Rasco BA, Huang Y. 2011. Application of surface enhanced Raman spectroscopy for analyses of restricted sulfa drugs. Sens Instrum Food Qual Saf. 5(3–4):91–96.
  • Lan S, Wang X, Liu Q, Bao J, Yang M, Fa H, Huo D. 2019. Fluorescent sensor for indirect measurement of methyl parathion based on alkaline-induced hydrolysis using N-doped carbon dots. Talanta. 192:368–373.
  • Lee D, Lee S, Seong GH, Choo J, Lee EK, Gweon DG, Lee S. 2006. Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced Raman spectroscopy. Appl Spectrosc. 60(4):373–377.
  • Lee KM, Herrman TJ. 2016. Determination and prediction of fumonisin contamination in Maize by surface-enhanced Raman spectroscopy (SERS). Food Bioprocess Technol. 9(4):588–603.
  • Li C, Huang Y, Lai K, Rasco BA, Fan Y. 2016a. Analysis of trace methylene blue in fish muscles using ultra-sensitive surface-enhanced Raman spectroscopy. Food Control. 65:99–105.
  • Li C, Yang C, Xu S, Zhang C, Li Z, Liu X, Man B. 2017a. Ag2O@ Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate. J Alloys Compd. 695:1677–1684.
  • Li H, Xie T, Shi D, Jin J, Xie C. 2016b. Enhanced electrochemiluminescence of luminol at the gold nanoparticle/carbon nanotube/electropolymerised molecular imprinting composite membrane interface for selective recognition of triazophos. Int J Environ Anal Chem. 96(13):1300–1311.
  • Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Wang ZL. 2010. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature. 464(7287):392.
  • Li JL, Sun D-W, Pu H, Jayas DS. 2017b. Determination of trace thiophanate-methyl and its metabolite carbendazim with teratogenic risk in red bell pepper (Capsicumannuum L.) by surface-enhanced Raman imaging technique. Food Chem. 218:543–552.
  • Li W, Qiu SP, Wu YJ. 2008. Triazophos residues and dissipation rates in wheat crops and soil. Ecotoxicol Environ Saf. 69(2):312–316.
  • Li X, Zhang S, Yu Z, Yang T. 2014. Surface-enhanced Raman spectroscopic analysis of phorate and fenthion pesticide in apple skin using silver nanoparticles. Appl Spectrosc. 68(4):483–487.
  • Li Y, Liu J, Zhang Y, Gu M, Wang D, Dang YY, Li Y. 2018. A robust electrochemical sensing platform using carbon paste electrode modified with molecularly imprinted microsphere and its application on methyl parathion detection. Biosens Bioelectron. 106:71–77.
  • Liou P, Nayigiziki FX, Kong F, Mustapha A, Lin M. 2017. Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples. Carbohydr Polym. 157:643–650.
  • Liu B, Han G, Zhang Z, Liu R, Jiang C, Wang S, Han MY. 2011. Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels. Anal Chem. 84(1):255–261.
  • Liu B, Zhou P, Liu X, Sun X, Li H, Lin M. 2013. Detection of pesticides in fruits by surface-enhanced Raman spectroscopy coupled with gold nanostructures. Food Bioprocess Technol. 6(3):710–718.
  • Liu Y, Pu H, Sun D-W. 2017. Hyperspectral imaging technique for evaluating food quality and safety during various processes: a review of recent applications. Trends Food Sci Technol. 69:25–35. doi:10.1016/j.tifs.2017.08.013
  • Liu Y, Sun D-W, Cheng J-H, Han Z. 2018. Hyperspectral imaging sensing of changes in moisture content and color of beef during microwave heating process. Food Anal Methods. 11:2472–2484.
  • Lombardi JR, Birke RL. 2009. A unified view of surface-enhanced Raman scattering. Acc Chem Res. 42(6):734–742.
  • Lu L, Wang H, Zhou Y, Xi S, Zhang H, Hu J, Zhao B. 2002. Seed-mediated growth of large, monodisperse core–shell gold–silver nanoparticles with Ag-like optical properties. Chem Commun. 2:144–145.
  • Luo H, Huang Y, Lai K, Rasco BA, Fan Y. 2016. Surface-enhanced Raman spectroscopy coupled with gold nanoparticles for rapid detection of phosmet and thiabendazole residues in apples. Food Control. 68:229–235.
  • Ma J, Pu H, Sun D-W. 2018. Predicting intramuscular fat content variations in boiled pork muscles by hyperspectral imaging using a novel spectral pre-processing technique. LWT-Food Sci Technol. 94:119–128. doi:10.1016/j.lwt.2018.04.030
  • Ma J, Sun D-W, Pu H. 2017. Model improvement for predicting moisture content (MC) in pork longissimus dorsi muscles under diverse processing conditions by hyperspectral imaging. J Food Eng. 196:65–72.
  • Morsy N, Sun D-W. 2013. Robust linear and non-linear models of NIR spectroscopy for detection and quantification of adulterants in fresh and frozen-thawed minced beef meat. Meat Sci. 93:292–302. doi:10.1016/j.meatsci.2012.09.005
  • Nickel U, Castell AZ, Pöppl K, Schneider S. 2000. A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced Raman spectroscopy. Langmuir. 16(23):9087–9091.
  • Njoki PN, Lim IIS, Mott D, Park HY, Khan B, Mishra S, Zhong CJ. 2007. Size correlation of optical and spectroscopic properties for gold nanoparticles. J Phys Chem C. 111(40):14664–14669.
  • Olson TY, Schwartzberg AM, Orme CA, Talley CE, O’Connell B, Zhang JZ. 2008. Hollow gold− silver double-shell nanospheres: structure, optical absorption, and surface-enhanced Raman scattering. J Phys Chem C. 112(16):6319–6329.
  • Pan T-T, Da-Wen Sun J, Pu PH, Wei Q. 2018a. A new method for accurate determination of polyphenol oxidase activity based on reduction in sers intensity of catechol. J Agric Food Chem. 66(42):11180–11187.
  • Pan -T-T, Pu H, Sun D-W. 2017a. Insights into the changes in chemical compositions of the cell wall of pear fruit infected by Alternaria alternata with confocal Raman micro spectroscopy. Postharvest Biol Technol. 132:119–129.
  • Pan T-T, Sun D-W, Pu H, Wei Q. 2018b. Simple approach for the rapid detection of alternariol in pear fruit by surface-enhanced raman scattering with pyridine-modified silver nanoparticles. J Agric Food Chem. 66:2180–2187. doi:10.1021/acs.jafc.7b05664
  • Pan TT, Sun D-W, Pu H, Wei Q, Xiao W, Wang QJ. 2017b. Detection of A. alternata from pear juice using surface-enhanced Raman spectroscopy-based silver nanodots array. J Food Eng. 215:147–155.
  • Pan Y, Sun D-W, Cheng J-H, Han Z. 2018. Non-destructive detection and screening of non-uniformity in microwave sterilization using hyperspectral imaging analysis. Food Anal Methods. 11:1568–1580.
  • Pang S, Yang T, He L. 2016. Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. Trends Anal Chem. 85:73–82.
  • Peña-Rodríguez O, Pal U. 2011. Au@ Ag core–shell nanoparticles: efficient all-plasmonic Fano-resonance generators. Nanoscale. 3(9):3609–3612.
  • Pu H, Xiao W, Sun D-W. 2017. SERS-microfluidic systems: a potential platform for rapid analysis of food contaminants. Trends Food Sci Technol. 70:114–126. doi:10.1016/j.tifs.2017.10.001
  • Qi M, Huang X, Zhou Y, Zhang L, Jin Y, Peng Y, Jiang H, Du S. 2016. Label-free surface-enhanced Raman scattering strategy for rapid detection of penicilloic acid in milk products. Food Chem. 197:723–729.
  • Qian XM, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Nie SM. 2008. In vivo tumor targeting and spectroscopic detection with surface enhanced Raman nanoparticle tags. Nat Biotechnol. 26:83–90.
  • Samal AK, Polavarapu L, Rodal-Cedeira S, Liz-Marzán LM, Pérez-Juste J, Pastoriza-Santos I. 2013. Size Tunable Au@ Ag core–shell nanoparticles: synthesis and surface-enhanced Raman scattering properties. Langmuir. 29(48):15076–15082.
  • Saute B, Narayanan R. 2011. Solution-based direct readout surface enhanced Raman spectroscopic (SERS) detection of ultra-low levels of thiram with dogbone shaped gold nanoparticles. Analyst. 136(3):527–532.
  • Schlücker S. 2009. SERS microscopy: nanoparticle probes and biomedical applications. Chem Phys Phys Chem. 10:1344–1354.
  • Shrivas K, Nirmalkar N, Ghosale A, Thakur SS, Shankar R. 2016. Enhancement of plasmonic resonance through an exchange reaction on the surface of silver nanoparticles: application to the highly selective detection of triazophos pesticide in food and vegetable samples. RSC Adv. 6(84):80739–80747.
  • Singh DK, Ganbold EO, Cho EM, Lee CM, Yang SI, Joo SW. 2013. Tautomerism of a thiabendazole fungicide on Ag and Au nanoparticles investigated by Raman spectroscopy and density functional theory calculations. J Mol Struct. 1049:464–472.
  • Smith WE. 2008. Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem Soc Rev. 37:955–964.
  • Sun D-W, Brosnan T. 2003. Pizza quality evaluation using computer vision––part 2: pizza topping analysis. J Food Eng. 57(1):91–95.
  • Sun Q, Yao Q, Sun Z, Zhou T, Nie D, Shi G, Jin L. 2011. Determination of Parathion‐methyl in Vegetables by Fluorescent‐Labeled Molecular Imprinted Polymer. Chin J Chem. 29(10):2134–2140.
  • Tan X, Li B, Liew K, Li C. 2010. Electrochemical fabrication of molecularly imprinted porous silicate film electrode for fast and selective response of methyl parathion. Biosens Bioelectron. 26(2):868–871.
  • Ticha J, Hajslova J, Jech M, Honzicek J, Lacina O, Kohoutkova J, Falta V. 2008. Changes of pesticide residues in apples during cold storage. Food Control. 19(3):247–256.
  • Vongsvivut J, Robertson EG, McNaughton D. 2010. Surface‐enhanced Raman spectroscopic analysis of fonofos pesticide adsorbed on silver and gold nanoparticles. J Raman Spectrosc. 41(10):1137–1148.
  • Walorczyk S, Gnusowski B. 2006. Fast and sensitive determination of pesticide residues in vegetables using low-pressure gas chromatography with a triple quadrupole mass spectrometer. J Chromatogr A. 1128(1–2):236–243.
  • Wang C, Wu Q, Wu C, Wang Z. 2011. Determination of some organophosphorus pesticides in water and watermelon samples by microextraction prior to high‐performance liquid chromatography. J Sep Sci. 34(22):3231–3239.
  • Wang HH, Sun D-W. 2003. Assessment of cheese browning affected by baking conditions using computer vision. J Food Eng. 56:339–345. doi:10.1016/S0260-8774(02)00159-0
  • Wang J, Kong L, Guo Z, Xu J, Liu J. 2010. Synthesis of novel decorated one-dimensional gold nanoparticle and its application in ultrasensitive detection of insecticide. J Mater Chem. 20(25):5271–5279.
  • Wang K, Sun D-W, Pu H, Wei Q. 2017a. Principles and applications of spectroscopic techniques for evaluating food protein conformational changes: a review. Trends Food Sci Technol. 67:207–219. doi:10.1016/j.tifs.2017.06.015
  • Wang K, Sun D-W, Pu H, Wei Q. 2019. Surface-enhanced raman scattering of core-shell Au@Ag nanowire aggregates for rapid detection of difenoconazole in grapes. Talanta. 191:449–456. doi:10.1016/j.talanta.2018.08.005
  • Wang K, Sun D-W, Pu H, Wei Q. 2019. Surface-enhanced Raman scattering of core-shell Au@ Ag nanoparticles aggregates for rapid detection of difenoconazole in grapes. Talanta. 191:449–456.
  • Wang K, Sun D-W, Wei Q, Pu H. 2018. Quantification and visualization of alpha-tocopherol in oil-in-water emulsion based delivery systems by Raman microspectroscopy. LWT-Food Sci Technol. 96:66–74. doi:10.1016/j.lwt.2018.05.017
  • Wang L, Sun D-W, Pu H, Cheng J-H. 2017b. Quality analysis, classification, and authentication of liquid foods by near-infrared spectroscopy: a review of recent research developments. Crit Rev Food Sci Nutr. 57:1524–1538. doi:10.1080/10408398.2015.1115954
  • Wang P, Wu L, Lu Z, Li Q, Yin W, Ding F, Han H. 2017. Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables. Anal Chem. 89(4):2424–2431.
  • Willets KA, Van Duyne RP. 2007. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 58:267–297.
  • Wu W, Liu L, Dai Z, Liu J, Yang S, Zhou L, Xiao X, Jiang C, Roy VAL. 2015. Low-cost, disposable, flexible and highly reproducible screen printed SERS substrates for the detection of various chemicals. Sci Rep. 5(1):10208.
  • Xu J-L, Riccioli C, Sun D-W. 2015. An overview on nondestructive spectroscopic techniques for lipid and lipid oxidation analysis in fish and fish products. Compr Rev Food Sci Food Saf. 14:466–477. doi:10.1111/crf3.2015.14.issue-4
  • Yande L, Yuxiang Z, Haiyang W, Bing Y. 2016. Detection of pesticides on navel orange skin by surface-enhanced Raman spectroscopy coupled with Ag nanostructures. Int J Agric Biol Eng. 9(2):179–185.
  • Yang Y, Liu J, Fu ZW, Qin D. 2014. Galvanic replacement-free deposition of Au on Ag for core–shell nanocubes with enhanced chemical stability and SERS activity. J Am Chem Soc. 136(23):8153–8156.
  • Yaseen T, Pu H, Sun D-W. 2018a. Functionalization techniques for improving SERS substrates and their applications in food safety evaluation: a review of recent research trends. Trends Food Sci Technol. 72:162–174. doi:10.1016/j.tifs.2017.12.012
  • Yaseen T, Pu H, Sun D-W. 2019. Fabrication of silver-coated gold nanoparticles to simultaneously detect multi-class insecticide residues in peach with SERS technique. Talanta. 196:537–545. doi:10.1016/j.talanta.2018.12.030
  • Yaseen T, Sun D-W, Cheng J-H. 2017. Raman imaging for food quality and safety evaluation: fundamentals and applications. Trends Food Sci Technol. 62:177–189. doi:10.1016/j.tifs.2017.01.012
  • Yaseen T, Sun DW, Pu H, Pan TT. 2018b. Detection of omethoate residues in peach with surface-enhanced Raman spectroscopy. Food Anal Methods. 11:2518–2527. doi:10.1007/s12161-018-1233-y
  • Ye CL, Zhou QX, Wang XM. 2008. Determination of thiophanate-methyl and chlorotoluron in water samples by improved single-drop microextraction coupled with high-performance liquid chromatography. Int J Environ Anal Chem. 88(7):461–471.
  • Zhang D, Yu D, Zhao W, Yang Q, Kajiura H, Li Y, Shi G. 2012. A molecularly imprinted polymer based on functionalized multiwalled carbon nanotubes for the electrochemical detection of parathion-methyl. Analyst. 137(11):2629–2636.
  • Zhang H, Sun L, Zhang Y, Kang Y, Hu H, Tang H, Du Y. 2017. Production of stable and sensitive SERS substrate based on commercialized porous material of silanized support. Talanta. 174:301–306.
  • Zhao L, Zhao F, Zeng B. 2013. Electrochemical determination of methyl parathion using a molecularly imprinted polymer–ionic liquid–graphene composite film coated electrode. Sens Actuators B Chem. 176:818–824.
  • Zheng C, Sun D-W, Zheng L. 2006. Correlating colour to moisture content of large cooked beef joints by computer vision. J Food Eng.
  • Zhu J, Liu MJ, Li JJ, Li X, Zhao JW. 2018. Multi-branched gold nanostars with fractal structure for SERS detection of the pesticide thiram. Spectrochim Acta Part A. 189:586–593.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.