1,317
Views
53
CrossRef citations to date
0
Altmetric
Articles

SERS detection of urea and ammonium sulfate adulterants in milk with coffee ring effect

, &
Pages 851-862 | Received 19 Jan 2019, Accepted 26 Feb 2019, Published online: 29 Apr 2019

References

  • Abernethy G, Higgs K. 2013. Rapid detection of economic adulterants in fresh milk by liquid chromatography–tandem mass spectrometry. J Chromatogr A. 1288:10–20.
  • Carvalho de BMA, de Carvalho LM, Dos Reis Coimbra JS, Minim LA, de Souza Barcellos E, Da Silva Júnior WF, de Carvalho GGP. 2015. Rapid detection of whey in milk powder samples by spectrophotometric and multivariate calibration. Food Chem. 174:1–7.
  • Cheng W, Sun D-W, Cheng J-H. 2016a. Pork biogenic amine index (BAI) determination based on chemometric analysis of hyperspectral imaging data. LWT Food Sci Technol. 73:13–19. doi:10.1016/j.lwt.2016.05.031
  • Cheng W, Sun D-W, Pu H, Liu Y. 2016b. Integration of spectral and textural data for enhancing hyperspectral prediction of K value in pork meat. LWT Food Sci Technol. 72:322–329. doi:10.1016/j.lwt.2016.05.003
  • Cheng W, Sun D-W, Pu H, Wei Q. 2017. Chemical spoilage extent traceability of two kinds of processed pork meats using one multispectral system developed by hyperspectral imaging combined with effective variable selection methods. Food Chem. 221:1989–1996. doi:10.1016/j.foodchem.2016.11.093
  • Cheng W, Sun D-W, Pu H, Wei Q. 2018. Heterospectral two-dimensional correlation analysis with near-infrared hyperspectral imaging for monitoring oxidative damage of pork myofibrils during frozen storage. Food Chem. 248:119–127. doi:10.1016/j.foodchem.2017.12.050
  • Cheng Y, Dong Y, Wu J, Yang X, Bai H, Zheng H, Li M. 2010. Screening melamine adulterant in milk powder with laser Raman spectrometry. J Food Compos Anal. 23(2):199–202.
  • Dai Q, Cheng J-H, Sun D-W, Zhu Z, Pu H. 2016. Prediction of total volatile basic nitrogen contents using wavelet features from visible/near-infrared hyperspectral images of prawn (metapenaeus ensis). Food Chem. 197:257–265. doi:10.1016/j.foodchem.2015.10.073
  • Dai X, Zhao Y, Li M, Fang X, Li X, Li H, Xu B. 2012. Determination of urea in milk by liquid chromatography-isotope dilution mass spectrometry. Anal Lett. 45(12):1557–1565.
  • Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA. 1997. Capillary flow as the cause of ring stains from dried liquid drops. Nature. 389(6653):827.
  • Domingo E, Tirelli AA, Nunes CA, Guerreiro MC, Pinto SM. 2014. Melamine detection in milk using vibrational spectroscopy and chemometrics analysis: a review. Food Res Int. 60:131–139.
  • Du CJ, Sun D-W. 2005. Pizza sauce spread classification using colour vision and support vector machines. J Food Eng. 66:137–145.
  • El-Abassy RM, Eravuchira PJ, Donfack P, Von der Kammer B, Materny A. 2011. Fast determination of milk fat content using Raman spectroscopy. Vib Spectrosc. 56(1):3–8.
  • Filik J, Stone N. 2008. Analysis of human tear fluid by Raman spectroscopy. Anal Chim Acta. 616(2):177–184.
  • Finete VDLM, Gouvêa MM, de Carvalho Marques FF, Netto ADP. 2013. Is it possible to screen for milk or whey protein adulteration with melamine, urea and ammonium sulphate, combining kjeldahl and classical spectrophotometric methods? Food Chem. 141(4):3649–3655.
  • Firkala T, Farkas A, Vajna B, Farkas I, Marosi G. 2013. Investigation of drug distribution in tablets using surface enhanced Raman chemical imaging. J Pharm Biomed Anal. 76:145–151.
  • Fu G, Sun D-W, Pu H, Wei Q. 2019. Fabrication of gold nanorods for SERS detection of thiabendazole in apple. Talanta. 195:841–849. doi:10.1016/j.talanta.2018.11.114
  • Gao F, Feng S, Chen Z, Li-Chan EC, Grant E, Lu X. 2014. Detection and quantification of chloramphenicol in milk and honey using molecularly imprinted polymers: Canadian penny based SERS nano biosensor. J Food Sci. 79(12):N2542–N2549.
  • Garcia JS, Sanvido GB, Saraiva SA, Zacca JJ, Cosso RG, Eberlin MN. 2012. Bovine milk powder adulteration with vegetable oils or fats revealed by MALDI-QTOF MS. Food Chem. 131(2):722–726.
  • Gulka CP, Swartz JD, Trantum JR, Davis KM, Peak CM, Denton AJ, Wright D-W. 2014. Coffee rings as low-resource diagnostics: detection of the malaria biomarker #lasmodium falciparum histidine-rich protein-II using a surface-coupled ring of Ni (II) NTA gold-plated polystyrene particles. ACS Appl Mater Interfaces. 6(9):6257–6263.
  • Halvorson RA, Leng W, Vikesland PJ. 2011. Differentiation of microcystin, nodularin, and their component amino acids by drop-coating deposition Raman spectroscopy. Anal Chem. 83(24):9273–9280.
  • Haynes CL, McFarland AD, Duyne RPV. 2005. Surface-enhanced Raman spectroscopy. Anal Chem. 77:338–346.
  • He H-J, Sun D-W. 2015. Microbial evaluation of raw and processed food products by visible/infrared, Raman and fluorescence spectroscopy. Trends Food Sci Technol. 46:199–210. doi:10.1016/j.tifs.2015.10.004
  • Hu H, Larson RG. 2006. Marangoni effect reverses coffee-ring depositions. J Phys Chem A. 110(14):7090–7094.
  • Hussain A, Pu H, Sun D-W. 2018a. Innovative nondestructive imaging techniques for ripening and maturity of fruits–a review of recent applications. Trends in Food Sci Technol. 72:144–152.
  • Hussain A, Pu H, Sun D-W. 2018b. Measurements of lycopene contents in fruit: a review of recent developments in conventional and novel techniques. Crit Rev Food Sci Nutr. 1–12.
  • Hussain I, Bell AE, Grandison AS. 2013. Mozzarella-type curd made from Buffalo, cows’ and ultrafiltered cows’ milk. 1. Rheology and microstructure. Food Bioprocess Technol. 6:1729–1740.
  • Jackman P, Sun D-W, Allen P. 2011. Recent advances in the use of computer vision technology in the quality assessment of fresh meats. Trends Food Sci Technol. 22:185–197.
  • Jehlička J, Edwards HGM, Culka A. 2010. Using portable Raman spectrometers for the identification of organic compounds at low temperatures and high altitudes: exobiological applications. Philos Trans R Soc London A. 368(1922):3109–3125.
  • Jeong HS, Chung H, Song SH, Kim CI, Lee JG, Kim YS. 2015. Validation and determination of the contents of acetaldehyde and formaldehyde in foods. Toxicol Res. 31(3):273.
  • Jha SN, Jaiswal P, Borah A, Gautam AK, Srivastava N. 2015. Detection and quantification of urea in milk using attenuated total reflectance-fourier transform infrared spectroscopy. Food Bioprocess Technol. 8(4):926–933.
  • Jiang Y, Sun D-W, Pu H, Wei Q. 2018. Surface enhanced Raman spectroscopy (SERS): A novel reliable technique for rapid detection of common harmful chemical residues. Trends Food Sci Technol. 75:10–22.
  • Jiang Y, Sun D-W, Pu H, Wei Q. 2019. Ultrasensitive analysis of kanamycin residue in milk by SERS-based aptasensor. Talanta. 197:151–158. doi:10.1016/j.talanta.2019.01.015
  • Kandpal SD, Srivastava AK, Negi KS. 2012. Estimation of quality of raw milk (open & branded) by milk adulteration testing kit. Indian J Community Health. 24(3):188–192.
  • Keuleers R, Desseyn HO, Rousseau B, Van Alsenoy C. 1999. Vibrational analysis of urea. J Phys Chem A. 103(24):4621–4630.
  • Khan KM, Krishna H, Majumder SK, Gupta PK. 2015. Detection of urea adulteration in milk using near-infrared Raman spectroscopy. Food Anal Methods. 8(1):93–102.
  • Lai YH, Cai YH, Lee H, Ou YM, Hsiao CH, Tsao CW, Wang YS. 2016. Reducing spatial heterogeneity of MALDI samples with Marangoni flows during sample preparation. J Am Soc Mass Spectrom. 27(8):1314–1321.
  • Larson RG. 2014. Transport and deposition patterns in drying sessile droplets. AIChE J. 60(5):1538–1571.
  • Li JL, Sun D-W, Pu H, Jayas DS. 2017. Determination of trace thiophanate-methyl and its metabolite carbendazim with teratogenic risk in red bell pepper (Capsicumannuum L.) by surface-enhanced Raman imaging technique. Food Chem. 218:543–552.
  • Li P, Teng Y, Nie Y, Liu W. 2018. SERS detection of insecticide amitraz residue in milk based on Au@ Ag core-shell nanoparticles. Food Anal Methods. 11(1):69–76.
  • Lin X, Lou XT, Lin DY, Lu ZW. 2015. Direct and quantitative detection of dicyandiamide (DCD) in milk using surface-enhanced Raman spectroscopy. Anal Methods. 7(9):3869–3875.
  • Liu J, Lu Y. 2006. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc. 1(1):246.
  • Liu Y, Pu H, Sun D-W. 2017. Hyperspectral imaging technique for evaluating food quality and safety during various processes: a review of recent applications. Trends Food Sci Technol. 69:25–35.
  • Liu Y, Sun D-W, Cheng J-H, Han Z. 2018. Hyperspectral imaging sensing of changes in moisture content and color of beef during microwave heating process. Food Anal Methods. 11:2472–2484.
  • Ma J, Pu H, Sun D-W. 2018. Predicting intramuscular fat content variations in boiled pork muscles by hyperspectral imaging using a novel spectral pre-processing technique. LWT Food Sci Technol. 94:119–128. doi:10.1016/j.lwt.2018.04.030
  • Ma J, Sun D-W, Pu H. 2017. Model improvement for predicting moisture content (MC) in pork longissimus dorsi muscles under diverse processing conditions by Hyperspectral Imaging. J Food Eng. 196:65–72.
  • Mampallil D, Eral HB. 2018. A review on suppression and utilization of the coffee-ring effect. Adv Colloid Interface Sci. 252:38–54.
  • Marsico AL, Duncan B, Landis RF, Tonga GY, Rotello VM, Vachet RW. 2017. Enhanced laser desorption/ionization mass spectrometric detection of biomolecules using gold nanoparticles, matrix, and the coffee ring effect. Anal Chem. 89(5):3009–3014.
  • McGoverin CM, Clark ASS, Holroyd SE, Gordon KC. 2010. Raman spectroscopic quantification of milk powder constituents. Anal Chim Acta. 673(1):26–32.
  • Moore JC, Spink J, Lipp M. 2012. Development and application of a database of food ingredient fraud and economically motivated adulteration from 1980 to 2010. J Food Sci. 77(4):R118–R126.
  • Morsy N, Sun D-W. 2013. Robust linear and non-linear models of NIR spectroscopy for detection and quantification of adulterants in fresh and frozen-thawed minced beef. Meat Sci. 93:292–302. doi:10.1016/j.meatsci.2012.09.005
  • Moskovits M. 1985. Surface-enhanced spectroscopy. Rev Mod Phys. 57(3):783–784.
  • Nieuwoudt MK, Holroyd SE, McGoverin CM, Simpson MC, Williams DE. 2016. Raman spectroscopy as an effective screening method for detecting adulteration of milk with small nitrogen-rich molecules and sucrose. J Dairy Sci. 99(4):2520–2536.
  • Pan T-T, Pu H, Sun D-W. 2017a. Insights into the changes in chemical compositions of the cell wall of pear fruit infected by Alternaria alternata with confocal Raman microspectroscopy. Postharvest Biol Technol. 132:119–129. doi:10.1016/j.postharvbio.2017.05.012
  • Pan T-T, Sun D-W, Paliwal J, Pu H, Wei Q. 2018a A new method for accurate determination of polyphenol oxidase activity based on reduction in SERS intensity of catechol. J Agric Food Chem. 66(42):11180–11187.
  • Pan TT, Sun D-W, Pu H, Wei Q. 2018b. Simple approach for the rapid detection of alternariol in pear fruit by surface-enhanced Raman scattering with pyridine-modified silver nanoparticles. J Agric Food Chem. 66(9):2180–2187.
  • Pan TT, Sun D-W, Pu H, Wei Q, Xiao W, Wang QJ. 2017b. Detection of A. alternata from pear juice using surface-enhanced Raman spectroscopy based silver nanodots array. J Food Eng. 215:147–155.
  • Pan Y, Sun D-W, Cheng J-H, Han Z. 2018c. Non-destructive detection and screening of non-uniformity in microwave sterilization using hyperspectral imaging analysis. Food Anal Methods. 11:1568–1580.
  • Parisse F, Allain C. 1996. Shape changes of colloidal suspension droplets during drying. J. Phys. II. 6(7):1111–1119.
  • Pu H, Xiao W, Sun D-W. 2017. SERS-microfluidic systems: a potential platform for rapid analysis of food contaminants. Trends Food Sci Technol. 70:114–126.
  • Qi M, Huang X, Zhou Y, Zhang L, Jin Y, Peng Y, Du S. 2016. Label-free surface-enhanced Raman scattering strategy for rapid detection of penicilloic acid in milk products. Food Chem. 197:723–729.
  • Ritota M, Manzi P. 2018. Melamine detection in milk and dairy products: traditional analytical methods and recent developments. Food Anal Methods. 11(1):128–147.
  • Santos PM, Pereira-Filho ER, Rodriguez-Saona LE. 2013. Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis. Food Chem. 138(1):19–24.
  • Still T, Yunker PJ, Yodh AG. 2012. Surfactant-induced marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir. 28(11):4984–4988.
  • Sun D-W, Brosnan T. 2003. Pizza quality evaluation using computer vision - Part 2 - Pizza topping analysis. J Food Eng. 57:91–95.
  • Sun D-W. 2018. Modern techniques for food authentication. 2nd Edition. Academic Press: San Diego (USA).
  • Sun J, Bao B, He M, Zhou H, Song Y. 2015. Recent advances in controlling the depositing morphologies of inkjet droplets. ACS Appl Mater Interfaces. 7(51):28086–28099.
  • Tan Z, Lou TT, Huang ZX, Zong J, Xu KX, Li QF, Chen D. 2017. Single-drop Raman imaging exposes the trace contaminants in milk. J Agric Food Chem. 65(30):6274–6281.
  • Toledo de PR, Toci AT, Pezza HR, Pezza L. 2017. Fast and simple method for identification of adulteration of cow’s milk with urea using diffuse reflectance spectroscopy. Anal Methods. 9(45):6357–6364.
  • Wang HH, Sun D-W. 2003. Assessment of cheese browning affected by baking conditions using computer vision. J Food Eng. 56:339–345. doi:10.1016/S0260-8774(02)00159-0
  • Wang K, Sun D-W, Pu H, Wei Q. 2017b. Principles and applications of spectroscopic techniques for evaluating food protein conformational changes: a review. Trends Food Sci Technol. 67:207–219. doi:10.1016/j.tifs.2017.06.015
  • Wang K, Sun D-W, Pu H, Wei Q. 2019. Surface-enhanced Raman scattering of core-shell Au@ Ag nanoparticles aggregates for rapid detection of difenoconazole in grapes. Talanta. 191:449–456.
  • Wang K, Sun D-W, Wei Q, Pu H. 2018. Quantification and visualization of α-tocopherol in oil-in-water emulsion based delivery systems by Raman microspectroscopy. LWT Food Sci Technol. 96:66–74.
  • Wang L, Sun D-W, Pu H, Cheng J-H. 2017a. Quality analysis, classification, and authentication of liquid foods by near-infrared spectroscopy: a review of recent research developments. Crit Rev Food Sci Nutr. 57:1524–1538. doi:10.1080/10408398.2015.1115954
  • Wang W, Yin Y, Tan Z, Liu J. 2014. Coffee-ring effect-based simultaneous SERS substrate fabrication and analyte enrichment for trace analysis. Nanoscale. 6(16):9588–9593.
  • Wen JT, Ho CM, Lillehoj PB. 2013. Coffee ring aptasensor for rapid protein detection. Langmuir. 29(26):8440–8446.
  • Xu J, Du J, Jing C, Zhang Y, Cui J. 2014. Facile detection of polycyclic aromatic hydrocarbons by a surface-enhanced Raman scattering sensor based on the Au coffee ring effect. ACS Appl Mater Interfaces. 6(9):6891–6897.
  • Yang J, Gunasekaran S. 2012. Indium tin oxide-coated glass modified with reduced graphene oxide sheets and gold nanoparticles dopamine sensing. in meeting abstracts (No. 2, pp. 8–8). J Electrochem Soc. 4:4594–4602.
  • Yang RJ, Zhang WY, Yang YR, Wu ZC, Dong GM, Du YH. 2014. Characterization of adulterated milk by two-dimensional infrared correlation spectroscopy. Anal Lett. 47(15):2560–2569.
  • Yaseen T, Pu H, Sun D-W. 2018a. Functionalization techniques for improving SERS substrates and their applications in food safety evaluation: a review of recent research trends. Trends Food Sci Technol. 72:162–174. doi:10.1016/j.tifs.2017.12.012
  • Yaseen T, Pu H, Sun D-W. 2019. Fabrication of silver-coated gold nanoparticles to simultaneously detect multi-class insecticide residues in peach with SERS technique. Talanta. 196:537–545. doi:10.1016/j.talanta.2018.12.030
  • Yaseen T, Sun D-W, Cheng JH. 2017. Raman imaging for food quality and safety evaluation: fundamentals and applications. Trends Food Sci Technol. 62:177–189.
  • Yaseen T, Sun D-W, Pu H, Pan TT. 2018b. Detection of omethoate residues in peach with surface-enhanced Raman spectroscopy. Food Anal Methods. 11:2518–2527.
  • Zheng C, Sun D-W, Zheng L. 2006. Correlating colour to moisture content of large cooked beef joints by computer vision. J Food Eng. 77:858–863.
  • Zhou W, Hu A, Bai S, Ma Y, Su Q. 2014. Surface-enhanced Raman spectra of medicines with large-scale self-assembled silver nanoparticle films based on the modified coffee ring effect. Nanoscale Res Lett. 9(1):87–96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.