1,425
Views
25
CrossRef citations to date
0
Altmetric
Reviews

Non-targeted screening of pesticides for food analysis using liquid chromatography high-resolution mass spectrometry-a review

, , &
Pages 1180-1201 | Received 30 Dec 2019, Accepted 02 Apr 2020, Published online: 18 May 2020

References

  • Aalizadeh R, Thomaidis NS, Bletsou AA, Gago-Ferrero P. 2016. Quantitative structure retention relationship models to support nontarget high-resolution mass spectrometric screening of emerging contaminants in environmental samples. J Chem Inf Model. 56:1384–1398. doi:10.1021/acs.jcim.5b00752.
  • Abate S, Ahn YG, Kind T, Cataldi TRI, Fiehn O. 2010. Determination of elemental compositions by gas chromatography/time-of-flight mass spectrometry using chemical and electron ionization. Rapid Commun Mass Sp. 24:1172–1180. doi:10.1002/rcm.4482.
  • Aguilera-Luiz MM, Romero-González R, Plaza-Bolaños P, Martínez Vidal JL, Garrido Frenich A. 2013. Wide-scope analysis of veterinary drug and pesticide residues in animal feed by liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry. Anal Bioanal Chem. 405:6543–6553. doi:10.1007/s00216-013-7060-5.
  • Albóniga OE, González O, Alonso RM, Xu Y, Goodacre R. 2020. Optimization of XCMS parameters for LC–MS metabolomics: an assessment of automated versus manual tuning and its effect on the final results. Metabolomics. 16:14. doi:10.1007/s11306-020-1636-9.
  • Alder L, Steinborn A, Bergelt S. 2011. Suitability of an orbitrap mass spectrometer for the screening of pesticide residues in extracts of fruits and vegetables. J Aoac Int. 94:1661–1673. doi:10.5740/jaoacint.SGEAlder.
  • Andra SS, Austin C, Patel D, Dolios G, Awawda M, Arora M. 2017. Trends in the application of high-resolution mass spectrometry for human biomonitoring: an analytical primer to studying the environmental chemical space of the human exposome. Environ Int. 100:32–61. doi:10.1016/j.envint.2016.11.026.
  • Andreu V, Picó Y. 2019. Pressurized liquid extraction of organic contaminants in environmental and food samples. TrAC-Trend Anal Chem. 118:709–721. doi:10.1016/j.trac.2019.06.038.
  • Antignac JP, Courant F, Pinel G, Bichon E, Monteau F, Elliott C, Le Bizec B. 2011. Mass spectrometry-based metabolomics applied to the chemical safety of food. TrAC-Trend Anal Chem. 30:292–301. doi:10.1016/j.trac.2010.11.003.
  • Bade R, Bijlsma L, Miller TH, Barron LP, Sancho JV, Hernández F. 2015. Suspect screening of large numbers of emerging contaminants in environmental waters using artificial neural networks for chromatographic retention time prediction and high resolution mass spectrometry data analysis. Sci Total Environ. 538:934–941. doi:10.1016/j.scitotenv.2015.08.078.
  • Baduel C, Mueller JF, Tsai H, Gomez Ramos MJ. 2015. Development of sample extraction and clean-up strategies for target and non-target analysis of environmental contaminants in biological matrices. J Chromatogr A. 1426:33–47. doi:10.1016/j.chroma.2015.11.040.
  • Barzen-Hanson KA, Roberts SC, Choyke S, Oetjen K, McAlees A, Riddell N, McCrindle R, Ferguson PL, Higgins CP, Field JA. 2017. Discovery of 40 Classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater. Environ Sci Technol. 51:2047–2057. doi:10.1021/acs.est.6b05843.
  • Bauer A, Kuballa J, Rohn S, Jantzen E, Luetjohann J. 2018a. Evaluation and validation of an ion mobility quadrupole time-of-flight mass spectrometry pesticide screening approach. J Sep Sci. 41:2178–2187. doi:10.1002/jssc.201701059.
  • Bauer A, Luetjohann J, Hanschen FS, Schreiner M, Kuballa J, Jantzen E, Rohn S. 2018b. Identification and characterization of pesticide metabolites in Brassica species by liquid chromatography travelling wave ion mobility quadrupole time-of-flight mass spectrometry (UPLC-TWIMS-QTOF-MS). Food Chem. 244:292–303. doi:10.1016/j.foodchem.2017.09.131.
  • Bauman JN, Ding C. 2015. Metabolite profiling and identification in cryopreserved human hepatocytes using thermo scientific compound discoverer software. Drug Metab Rev. 47:200.
  • Becker S, Kortz L, Helmschrodt C, Thiery J, Ceglarek U. 2012. LC-MS-based metabolomics in the clinical laboratory. J Chromatogr B. 883-884:68–75. doi:10.1016/j.jchromb.2011.10.018.
  • Bernardi G, Kemmerich M, Ribeiro LC, Adaime MB, Zanella R, Prestes OD. 2016. An effective method for pesticide residues determination in tobacco by GC-MS/MS and UHPLC-MS/MS employing acetonitrile extraction with low-temperature precipitation and d-SPE clean-up. Talanta. 161:40–47. doi:10.1016/j.talanta.2016.08.015.
  • Berrueta LA, Alonso-Salces RM, Héberger K. 2007. Supervised pattern recognition in food analysis. J Chromatogr A. 1158:196–214. doi:10.1016/j.chroma.2007.05.024.
  • Bletsou AA, Jeon J, Hollender J, Archontaki E, Thomaidis NS. 2015. Targeted and non-targeted liquid chromatography-mass spectrometric workflows for identification of transformation products of emerging pollutants in the aquatic environment. TrAC-Trend Anal Chem. 66:32–44. doi:10.1016/j.trac.2014.11.009.
  • Bocker S, Rasche F. 2008. Towards de novo identification of metabolites by analyzing tandem mass spectra. Bioinformatics. 24:I49–I55. doi:10.1093/bioinformatics/btn270.
  • Bondia-Pons I, Savolainen O, Törrönen R, Martinez JA, Poutanen K, Hanhineva K. 2014. Metabolic profiling of Goji berry extracts for discrimination of geographical origin by non-targeted liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Food Res Int. 63:132–138. doi:10.1016/j.foodres.2014.01.067.
  • Cawley A, Pasin D, Ganbat N, Ennis L, Smart C, Greer C, Keledjian J, Fu SL, Chen A. 2016. The potential for complementary targeted/non-targeted screening of novel psychoactive substances in equine urine using liquid chromatography-high resolution accurate mass spectrometry. Anal Methods-Uk. 8:1789–1797. doi:10.1039/C6AY00156D.
  • Chavez Soria NG, Bisson MA, Atilla-Gokcumen GE, Aga DS. 2019. High-resolution mass spectrometry-based metabolomics reveal the disruption of jasmonic pathway in Arabidopsis thaliana upon copper oxide nanoparticle exposure. Sci Total Environ. 693:133443. doi:10.1016/j.scitotenv.2019.07.249.
  • Chervin J, Stierhof M, Tong MH, Peace D, Hansen KO, Urgast DS, Andersen JH, Yu Y, Ebel R, Kyeremeh K, et al. 2017. Targeted dereplication of microbial natural products by high-resolution ms and predicted lc retention time. J Nat Prod. 80:1370–1377. doi:10.1021/acs.jnatprod.6b01035.
  • Chevrier C, Warembourg C, Gaudreau E, Monfort C, Blanc A, Guldner L, Cordier S. 2013. Organochlorine pesticides, polychlorinated biphenyls, seafood consumption, and time-to-pregnancy. Epidemiology. 24:251–260. doi:10.1097/EDE.0b013e31827f53ec.
  • Chiaia-Hernandez AC, Schymanski EL, Kumar P, Singer HP, Hollender J. 2014. Suspect and nontarget screening approaches to identify organic contaminant records in lake sediments. Anal Bioanal Chem. 406:7323–7335. doi:10.1007/s00216-014-8166-0.
  • Costa LG, Giordano G, Guizzetti M, Vitalone A. 2008. Neurotoxicity of pesticides: a brief review. Front Biosci. 13:1240–1249. doi:10.2741/2758.
  • Courant F, Pinel G, Bichon E, Monteau F, Antignac J-P, Le Bizec B. 2009. Development of a metabolomic approach based on liquid chromatography-high resolution mass spectrometry to screen for clenbuterol abuse in calves. Analyst. 134:1637–1646. doi:10.1039/b901813a.
  • Cremonese C, Freire C, De Camargo AM, De Lima JS, Koifman S, Meyer A. 2014. Pesticide consumption, central nervous system and cardiovascular congenital malformations in the South and Southeast region of Brazil. Int J Occup Med Env. 27:474–486.
  • Croley T, White K, Callahan J, Musser S. 2012. The chromatographic role in high resolution mass spectrometry for non-targeted analysis. J Am Soc Mass Spectr. 23:1569–1578. doi:10.1007/s13361-012-0392-0.
  • Cubero-Leon E, De Rudder O, Maquet A. 2018. Metabolomics for organic food authentication: results from a long-term field study in carrots. Food Chem. 239:760–770. doi:10.1016/j.foodchem.2017.06.161.
  • D’Agostino LA, Mabury SA. 2014. Identification of novel fluorinated surfactants in aqueous film forming foams and commercial surfactant concentrates. Environ Sci Technol. 48:121–129. doi:10.1021/es403729e.
  • Dahlin JL, Palte MJ, LaMacchia J, Petrides AK. 2019. A rapid dilute-and-shoot UPLC-MS/MS assay to simultaneously measure 37 drugs and related metabolites in human urine for use in clinical pain management. J Appl Lab Med. 3:974–992. doi:10.1373/jalm.2018.027342.
  • de Albuquerque NCP, Carrão DB, Habenschus MD, de Oliveira ARM. 2018. Metabolism studies of chiral pesticides: A critical review. J Pharmaceut Biomed. 147:89–109. doi:10.1016/j.jpba.2017.08.011.
  • De Dominicis E, Commissati I, Gritti E, Catellani D, Suman M. 2015. Quantitative targeted and retrospective data analysis of relevant pesticides, antibiotics and mycotoxins in bakery products by liquid chromatography-single-stage Orbitrap mass spectrometry. Food Addit Contam A. 32:1617–1627. doi:10.1080/19440049.2015.1061703.
  • Delaporte G, Cladière M, Jouan-Rimbaud Bouveresse D, Camel V. 2019. Untargeted food contaminant detection using UHPLC-HRMS combined with multivariate analysis: feasibility study on tea. Food Chem. 277:54–62. doi:10.1016/j.foodchem.2018.10.089.
  • Denisov E, Damoc E, Lange O, Makarov A. 2012. Orbitrap mass spectrometry with resolving powers above 1,000,000. Int J Mass Spectrom. 325-327:80–85. doi:10.1016/j.ijms.2012.06.009.
  • Deventer K, Pozo OJ, Verstraete AG, Van Eenoo P. 2014. Dilute-and-shoot-liquid chromatography-mass spectrometry for urine analysis in doping control and analytical toxicology. TrAC-Trend Anal Chem. 55:1–13. doi:10.1016/j.trac.2013.10.012.
  • Díaz R, Ibáñez M, Sancho JV, Hernández F. 2012. Target and non-target screening strategies for organic contaminants, residues and illicit substances in food, environmental and human biological samples by UHPLC-QTOF-MS. Anal Methods-Uk. 4:196–209. doi:10.1039/C1AY05385J.
  • Du B, Lofton JM, Peter KT, Gipe AD, James CA, McIntyre JK, Scholz NL, Baker JE, Kolodziej EP. 2017. Development of suspect and non-target screening methods for detection of organic contaminants in highway runoff and fish tissue with high-resolution time-of-flight mass spectrometry. Enviro Sci-Proc Imp. 19:1185–1196.
  • Esposito S, Bracacel E, Nibbio M, Speziale R, Orsatti L, Veneziano M, Monteagudo E, Bonelli F. 2016. Use of ‘dilute-and-shoot’ liquid chromatography-high resolution mass spectrometry in preclinical research: application to a DMPK study of perhexiline in mouse plasma. J Pharmaceut Biomed. 118:70–80. doi:10.1016/j.jpba.2015.10.004.
  • Evangelou E, Ntritsos G, Chondrogiorgi M, Kavvoura FK, Hernández AF, Ntzani EE, Tzoulaki I. 2016. Exposure to pesticides and diabetes: A systematic review and meta-analysis. Environ Int. 91:60–68. doi:10.1016/j.envint.2016.02.013.
  • Farré M, Picó Y, Barceló D. 2014. Application of ultra-high pressure liquid chromatography linear ion-trap orbitrap to qualitative and quantitative assessment of pesticide residues. J Chromatogr A. 1328:66–79. doi:10.1016/j.chroma.2013.12.082.
  • Ferrer I, Thurman EM. 2007. Multi-residue method for the analysis of 101 pesticides and their degradates in food and water samples by liquid chromatography/time-of-flight mass spectrometry. J Chromatogr A. 1175:24–37. doi:10.1016/j.chroma.2007.09.092.
  • Filigenzi MS, Graves EE, Tell LA, Jelks KA, Poppenga RH. 2019. Quantitation of neonicotinoid insecticides, plus qualitative screening for other xenobiotics, in small-mass avian tissue samples using UHPLC high-resolution mass spectrometry. J Vet Diagn Invest. 31:399–407. doi:10.1177/1040638719834329.
  • Gago-Ferrero P, Schymanski EL, Bletsou AA, Aalizadeh R, Hollender J, Thomaidis NS. 2015. Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS. Environ Sci Technol. 49:12333–12341. doi:10.1021/acs.est.5b03454.
  • Galani JHY, Houbraken M, Van Hulle M, Spanoghe P. 2019. Comparison of electrospray and UniSpray, a novel atmospheric pressure ionization interface, for LC-MS/MS analysis of 81 pesticide residues in food and water matrices. Anal Bioanal Chem. 411:5099–5113. doi:10.1007/s00216-019-01886-z.
  • Gao J, Ellis LBM, Wackett LP. 2011. The University of Minnesota Pathway Prediction System: multi-level prediction and visualization. Nucleic Acids Res. 39:W406–W411. doi:10.1093/nar/gkr200.
  • Gao T, Xu Y, Wang K, Deng Y, Yang Y, Lu Q, Pan J, Xu Z. 2018. Comparative LC-MS based non-targeted metabolite profiling of the Chinese mitten crab Eriocheir sinensis suffering from hepatopancreatic necrosis disease (HPND). Aquaculture. 491:338–345. doi:10.1016/j.aquaculture.2018.03.030.
  • Ghaste M, Mistrik R, Shulaev V. 2016. Applications of Fourier transform ion cyclotron resonance (FT-ICR) and orbitrap based high resolution mass spectrometry in metabolomics and lipidomics. Int J Mol Sci. 17:816. doi:10.3390/ijms17060816.
  • Ghoniem IR, Attallah ER, Abo-Aly MM. 2017. Determination of acidic herbicides in fruits and vegetables using liquid chromatography tandem mass spectrometry (LC-MS/MS). Int J Environ An Ch. 97:301–312. doi:10.1080/03067319.2017.1306062.
  • Gilbert-López B, García-Reyes JF, Molina-Díaz A. 2009. Sample treatment and determination of pesticide residues in fatty vegetable matrices: A review. Talanta. 79:109–128. doi:10.1016/j.talanta.2009.04.022.
  • Glauner T, Wust B, Faye T. 2016. A comprehensive workflow for target, suspect, and non-target screening by LC/MS demonstrated for the identification of CECs in effluents from waste water treatment plants. ACS Sym Ser. 1242:113–130.
  • Gómez-Pérez ML, Plaza-Bolaños P, Romero-González R, Martínez-Vidal JL, Garrido-Frenich A. 2012. Comprehensive qualitative and quantitative determination of pesticides and veterinary drugs in honey using liquid chromatography-Orbitrap high resolution mass spectrometry. J Chromatogr A. 1248:130–138. doi:10.1016/j.chroma.2012.05.088.
  • Gómez-Pérez ML, Romero-González R, Vidal JLM, Frenich AG. 2015. Identification of transformation products of pesticides and veterinary drugs in food and related matrices: use of retrospective analysis. J Chromatogr A. 1389:133–138. doi:10.1016/j.chroma.2015.02.052.
  • Gómez-Ramos MM, Ferrer C, Malato O, Agüera A, Fernández-Alba AR. 2013. Liquid chromatography-high-resolution mass spectrometry for pesticide residue analysis in fruit and vegetables: screening and quantitative studies. J Chromatogr A. 1287:24–37. doi:10.1016/j.chroma.2013.02.065.
  • Goon A, Khan Z, Oulkar D, Shinde R, Gaikwad S, Banerjee K. 2018. A simultaneous screening and quantitative method for the multiresidue analysis of pesticides in spices using ultra-high performance liquid chromatography-high resolution (Orbitrap) mass spectrometry. J Chromatogr A. 1532:105–111. doi:10.1016/j.chroma.2017.11.066.
  • Grimalt S, Sancho JV, ÓJ P, Hernández F. 2010. Quantification, confirmation and screening capability of UHPLC coupled to triple quadrupole and hybrid quadrupole time-of-flight mass spectrometry in pesticide residue analysis. J Mass Spectrom. 45:421–436. doi:10.1002/jms.1728.
  • Hayden KM, Norton MC, Darcey D, Ostbye T, Zandi PP, Breitner JCS, Welsh-Bohmer KA, Cache County SI. 2010. Occupational exposure to pesticides increases the risk of incident AD: the Cache County study. Neurology. 74:1524–1530. doi:10.1212/WNL.0b013e3181dd4423.
  • Hayward D, Wong J, Zhang K, Chang J, Shi F, Banerjee K, Yang P. 2011. Multiresidue pesticide analysis in ginseng and spinach by nontargeted and targeted screening procedures. J Aoac Int. 94:1741–1751. doi:10.5740/jaoacint.SGEHayward.
  • He Z, Xu Y, Wang L, Peng Y, Luo M, Cheng H, Liu X. 2016. Wide-scope screening and quantification of 50 pesticides in wine by liquid chromatography/quadrupole time-of-flight mass spectrometry combined with liquid chromatography/quadrupole linear ion trap mass spectrometry. Food Chem. 196:1248–1255. doi:10.1016/j.foodchem.2015.10.042.
  • Hernández F, Grimalt S, Pozo ÓJ, Sancho JV. 2009. Use of ultra-high-pressure liquid chromatography–quadrupole time-of-flight MS to discover the presence of pesticide metabolites in food samples. J Sep Sci. 32. 2245–2261.
  • Herrera-Lopez S, Hernando MD, Garcia-Calvo E, Fernandez-Alba AR, Ulaszewska MM. 2014. Simultaneous screening of targeted and non-targeted contaminants using an LC-QTOF-MS system and automated MS/MS library searching. J Mass Spectrom. 49:878–893. doi:10.1002/jms.3428.
  • Hohrenk LL, Itzel F, Baetz N, Tuerk J, Vosough M, Schmidt TC. 2020. Comparison of Software Tools for Liquid Chromatography–High-Resolution Mass Spectrometry Data Processing in Nontarget Screening of Environmental Samples. Anal Chem. 92:1898–1907. doi:10.1021/acs.analchem.9b04095.
  • Hollender J, Schymanski EL, Singer HP, Ferguson PL. 2017. nontarget screening with high resolution mass spectrometry in the environment: ready to go? Environ Sci Technol. 51:11505–11512. doi:10.1021/acs.est.7b02184.
  • Hsu FF. 2018. Mass spectrometry-based shotgun lipidomics-a critical review from the technical point of view. Anal Bioanal Chem. 410:6387–6409. doi:10.1007/s00216-018-1252-y.
  • Hsu JY, Hsu JF, Chen YR, Shih CL, Hsu YS, Chen YJ, Tsai SH, Liao PC. 2016. Urinary exposure marker discovery for toxicants using ultra-high pressure liquid chromatography coupled with Orbitrap high resolution mass spectrometry and three untargeted metabolomics approaches. Anal Chim Acta. 939:73–83. doi:10.1016/j.aca.2016.07.032.
  • Hu S, Zhao M, Xi Y, Mao Q, Zhou X, Chen D, Yan P. 2017. Nontargeted screening and determination of sulfonamides: A dispersive micro solid-phase extraction approach to the analysis of milk and honey samples using liquid chromatography–high-resolution mass spectrometry. J Agr Food Chem. 65:1984–1991. doi:10.1021/acs.jafc.6b05773.
  • Hu Y, Cai B, Huan T. 2019. Enhancing metabolome coverage in data-dependent LC-MS/MS analysis through an integrated feature extraction strategy. Anal Chem. 91:14433–14441. doi:10.1021/acs.analchem.9b02980.
  • Huang Y, Shi T, Luo X, Xiong H, Min F, Chen Y, Nie S, Xie M. 2019. Determination of multi-pesticide residues in green tea with a modified QuEChERS protocol coupled to HPLC-MS/MS. Food Chem. 275:255–264. doi:10.1016/j.foodchem.2018.09.094.
  • Jaworska JS, Dimitrov S, Nikolova N, Mekenyan O. 2002. Probabilistic assessment of biodegradability based on metabolic pathways: CATABOL System. Sar Qsar Environ Res. 13:307–323. doi:10.1080/10629360290002794.
  • Kang Y, Burton L, Lau A, Tate S. 2017. SWATH-ID: an instrument method which combines identification and quantification in a single analysis. Proteomics. 17:1500522. doi:10.1002/pmic.201500522.
  • Katajamaa M, Miettinen J, Oresic M. 2006. MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics. 22:634–636. doi:10.1093/bioinformatics/btk039.
  • Kind T, Fiehn O. 2007. Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. Bmc Bioinformatics. 8:105–110. doi:10.1186/1471-2105-8-105.
  • Kinyua J, Negreira N, Ibanez M, Bijlsma L, Hernandez F, Covaci A, van Nuijs ALN. 2015. A data-independent acquisition workflow for qualitative screening of new psychoactive substances in biological samples. Anal Bioanal Chem. 407:8773–8785. doi:10.1007/s00216-015-9036-0.
  • Knolhoff AM, Callahan JH, Croley TR. 2014. Mass accuracy and isotopic abundance measurements for hr-ms instrumentation: capabilities for non-targeted analyses. J Am Soc Mass Spectr. 25:1285–1294. doi:10.1007/s13361-014-0880-5.
  • Knolhoff AM, Croley TR. 2016. Non-targeted screening approaches for contaminants and adulterants in food using liquid chromatography hyphenated to high resolution mass spectrometry. J Chromatogr A. 1428:86–96. doi:10.1016/j.chroma.2015.08.059.
  • Knolhoff AM, Kneapler CN, Croley TR. 2019. Optimized chemical coverage and data quality for non-targeted screening applications using liquid chromatography/high-resolution mass spectrometry. Anal Chim Acta. 1066:93–101. doi:10.1016/j.aca.2019.03.032.
  • Krauss M, Singer H, Hollender J. 2010. LC–high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal Bioanal Chem. 397:943–951. doi:10.1007/s00216-010-3608-9.
  • Kuhl C, Tautenhahn R, Bottcher C, Larson TR, Neumann S. 2012. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal Chem. 84:283–289. doi:10.1021/ac202450g.
  • Kunzelmann M, Winter M, Åberg M, Hellenäs K-E RJ. 2018. Non-targeted analysis of unexpected food contaminants using LC-HRMS. Anal Bioanal Chem. 410:5593–5602. doi:10.1007/s00216-018-1028-4.
  • Lacina O, Urbanova J, Poustka J, Hajslova J. 2010. Identification/quantification of multiple pesticide residues in food plants by ultra-high-performance liquid chromatography-time-of-flight mass spectrometry. J Chromatogr A. 1217:648–659. doi:10.1016/j.chroma.2009.11.098.
  • Lacina O, Zachariasova M, Urbanova J, Vaclavikova M, Cajka T, Hajslova J. 2012. Critical assessment of extraction methods for the simultaneous determination of pesticide residues and mycotoxins in fruits, cereals, spices and oil seeds employing ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. 1262:8–18. doi:10.1016/j.chroma.2012.08.097.
  • Lee Y-J, Rahman MM, Abd El-Aty AM, Choi J-H, Chung HS, Kim S-W, Abdel-Aty AM, Shin H-C, Shim J-H. 2016. Detection of three herbicide, and one metabolite, residues in brown rice and rice straw using various versions of the QuEChERS method and liquid chromatography-tandem mass spectrometry. Food Chem. 210:442–450.
  • León N, Pastor A, Yusà V. 2016. Target analysis and retrospective screening of veterinary drugs, ergot alkaloids, plant toxins and other undesirable substances in feed using liquid chromatography-high resolution mass spectrometry. Talanta. 149:43–52. doi:10.1016/j.talanta.2015.11.032.
  • Li Z, Lu Y, Guo Y, Cao H, Wang Q, Shui W. 2018. Comprehensive evaluation of untargeted metabolomics data processing software in feature detection, quantification and discriminating marker selection. Anal Chim Acta. 1029:50–57.
  • Li Z, Maier MP, Radke M. 2014. Screening for pharmaceutical transformation products formed in river sediment by combining ultrahigh performance liquid chromatography/high resolution mass spectrometry with a rapid data-processing method. Anal Chim Acta. 810:61–70. doi:10.1016/j.aca.2013.12.012.
  • Little JL, Cleven CD, Howard AS, Yu K. 2013. Identifying “Known Unknowns” in Commercial Products by Mass Spectrometry. Lc Gc Eur. 26:163–168.
  • Lohne JJ, Turnipseed SB, Andersen WC, Storey J, Madson MR. 2015. Application of single-stage Orbitrap mass spectrometry and differential analysis software to nontargeted analysis of contaminants in dog food: detection, identification, and quantification of glycoalkaloids. J Agr Food Chem. 63:4790–4798.
  • López MG, Fussell RJ, Stead SL, Roberts D, McCullagh M, Rao R. 2014. Evaluation and validation of an accurate mass screening method for the analysis of pesticides in fruits and vegetables using liquid chromatography-quadrupole-time of flight-mass spectrometry with automated detection. J Chromatogr A. 1373:40–50.
  • Lozano A, Ferrer C, Fernández-Alba AR. 2019. Selectivity enhancement using sequential mass isolation window acquisition with hybrid quadrupole time-of-flight mass spectrometry for pesticide residues. J Chromatogr A. 1591:99–109. doi:10.1016/j.chroma.2019.01.019.
  • Łozowicka B, Jankowska M, Rutkowska E, Hrynko I, Kaczyński P, Miciński J. 2014. The evaluation of a fast and simple pesticide multiresidue method in various herbs by gas chromatography. J Nat Med. 68:95–111.
  • Madej K, Kalenik TK, Piekoszewski W. 2018. Sample preparation and determination of pesticides in fat-containing foods. Food Chem. 269:527–541.
  • Malato O, Lozano A, Mezcua M, Agüera A, Fernandez-Alba AR. 2011. Benefits and pitfalls of the application of screening methods for the analysis of pesticide residues in fruits and vegetables. J Chromatogr A. 1218:7615–7626. doi:10.1016/j.chroma.2011.06.110.
  • Masiá A, Suarez-Varela MM, Llopis-Gonzalez A, Picó Y. 2016. Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: A review. Anal Chim Acta. 936:40–61. doi:10.1016/j.aca.2016.07.023.
  • Mavumengwana-Khanyile B, Katima Z, Songa EA, Okonkwo JO. 2019. Recent advances in sorbents applications and techniques used for solid-phase extraction of atrazine and its metabolites deisopropylatrazine and deethylatrazine: a review. Int J Environ An Ch. 99:1017–1068. doi:10.1080/03067319.2019.1597866.
  • Menikarachchi LC, Cawley S, Hill DW, Hall LM, Hall L, Lai S, Wilder J, Grant DF. 2012. MolFind: A software package enabling HPLC/MS-based identification of unknown chemical structures. Anal Chem. 84:9388–9394. doi:10.1021/ac302048x.
  • Meringer M, Reinker S, Zhang JA, Muller A. 2011. MS/MS data improves automated determination of molecular formulas by mass spectrometry. Match-Commun Math Co. 65:259–290.
  • Mezcua M, Malato O, García-Reyes JF, Molina-Díaz A, Fernández-Alba AR. 2009. Accurate-mass databases for comprehensive screening of pesticide residues in food by fast liquid chromatography time-of-flight mass spectrometry. Anal Chem. 81:913–929. doi:10.1021/ac801411t.
  • Mezcua M, Malato O, Martinez-Uroz M, Lozano A, Agüera A, Fernández-Alba A. 2011. Evaluation of relevant time-of-flight-ms parameters used in HPLC/MS full-scan screening methods for pesticide residues. J Aoac Int. 94:1674–1684. doi:10.5740/jaoacint.SGEMezcua.
  • Mol HGJ, van Dam RCJ. 2014. Rapid detection of pesticides not amenable to multi-residue methods by flow injection-tandem mass spectrometry. Anal Bioanal Chem. 406:6817–6825. doi:10.1007/s00216-014-7644-8.
  • Mol HGJ, Zomer P, de Koning M. 2012. Qualitative aspects and validation of a screening method for pesticides in vegetables and fruits based on liquid chromatography coupled to full scan high resolution (Orbitrap) mass spectrometry. Anal Bioanal Chem. 403:2891–2908. doi:10.1007/s00216-012-6100-x.
  • Moriya Y, Shigemizu D, Hattori M, Tokimatsu T, Kotera M, Goto S, Kanehisa M. 2010. PathPred: an enzyme-catalyzed metabolic pathway prediction server. Nucleic Acids Res. 38:W138–W143. doi:10.1093/nar/gkq318.
  • Musarurwa H, Chimuka L, Pakade VE, Tavengwa NT. 2019. Recent developments and applications of QuEChERS based techniques on food samples during pesticide analysis. J Food Compos Anal. 84:103314. doi:10.1016/j.jfca.2019.103314.
  • Myers OD, Sumner SJ, Li S, Barnes S, Du X. 2017. Detailed investigation and comparison of the XCMS and MZmine 2 chromatogram construction and chromatographic peak detection methods for preprocessing mass spectrometry metabolomics data. Anal Chem. 89:8689–8695. doi:10.1021/acs.analchem.7b01069.
  • Newton S, McMahen R, Stoeckel JA, Chislock M, Lindstrom A, Strynar M. 2017. Novel polyfluorinated compounds identified using high resolution mass spectrometry downstream of manufacturing facilities near Decatur, Alabama. Environ Sci Technol. 51:1544–1552. doi:10.1021/acs.est.6b05330.
  • Oberacher H, Arnhard K. 2016. Current status of non-targeted liquid chromatography-tandem mass spectrometry in forensic toxicology. TrAC-Trend Anal Chem. 84:94–105. doi:10.1016/j.trac.2015.12.019.
  • Ötles S, Kartal C. 2016. Solid-Phase Extraction (SPE): principles and applications in food samples. Acta Scientiarum Polonorum Technologia Alimentaria. 15:5–15. doi:10.17306/J.AFS.2016.1.1.
  • Parrilla Vázquez P, Ferrer C, Martínez Bueno MJ, Fernández-Alba AR. 2019. Pesticide residues in spices and herbs: sample preparation methods and determination by chromatographic techniques. TrAC-Trend Anal Chem. 115:13–22. doi:10.1016/j.trac.2019.03.022.
  • Parrilla Vázquez P, Lozano A, Ferrer C, Martínez Bueno MJ, Fernández-Alba AR. 2018. Improvements in identification and quantitation of pesticide residues in food by LC-QTOF using sequential mass window acquisition (SWATH®). Anal Methods-Uk. 10:2821–2833. doi:10.1039/C8AY00678D.
  • Pérez-Fernández V, Mainero Rocca L, Tomai P, Fanali S, Gentili A. 2017. Recent advancements and future trends in environmental analysis: sample preparation, liquid chromatography and mass spectrometry. Anal Chim Acta. 983:9–41. doi:10.1016/j.aca.2017.06.029.
  • Pérez-Ortega P, Lara-Ortega FJ, Gilbert-López B, Moreno-González D, García-Reyes JF, Molina-Díaz A. 2017. Screening of over 600 pesticides, veterinary drugs, food-packaging contaminants, mycotoxins, and other chemicals in food by ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOFMS). Food Anal Method. 10:1216–1244. doi:10.1007/s12161-016-0678-0.
  • Picó Y, El-Sheikh MA, Alfarhan AH, Barceló D. 2018. Target vs non-target analysis to determine pesticide residues in fruits from Saudi Arabia and influence in potential risk associated with exposure. Food Chem Toxicol. 111:53–63. doi:10.1016/j.fct.2017.10.060.
  • Picó Y, Farré M, Segarra R, Barceló D. 2010. Profiling of compounds and degradation products from the postharvest treatment of pears and apples by ultra-high pressure liquid chromatography quadrupole-time-of-flight mass spectrometry. Talanta. 81:281–293. doi:10.1016/j.talanta.2009.11.070.
  • Pluskal T, Uehara T, Yanagida M. 2012. Highly accurate chemical formula prediction tool utilizing high-resolution mass spectra, ms/ms fragmentation, heuristic rules, and isotope pattern matching. Anal Chem. 84:4396–4403. doi:10.1021/ac3000418.
  • Polgár L, García-Reyes JF, Fodor P, Gyepes A, Dernovics M, Abrankó L, Gilbert-López B, Molina-Díaz A. 2012. Retrospective screening of relevant pesticide metabolites in food using liquid chromatography high resolution mass spectrometry and accurate-mass databases of parent molecules and diagnostic fragment ions. J Chromatogr A. 1249:83–91. doi:10.1016/j.chroma.2012.05.097.
  • Poole CF, editor. 2020. Chapter 1-Milestones in the development of liquid-phase extraction techniques. In:Liquid-phase extraction. Amsterdam, Netherlands: Elsevier; p. 1–44.
  • Rice SJ, Liu X, Zhang JH, Belani CP. 2019. Absolute quantification of all identified plasma proteins from SWATH data for biomarker discovery. Proteomics, 19:e1800135.
  • Rocha BA, Asimakopoulos AG, Barbosa F, Kannan K. 2017. Urinary concentrations of 25 phthalate metabolites in Brazilian children and their association with oxidative DNA damage. Sci Total Environ. 586:152–162. doi:10.1016/j.scitotenv.2017.01.193.
  • Roemmelt AT, Steuer AE, Poetzsch M, Kraemer T. 2014. Liquid chromatography, in combination with a quadrupole time-of-flight instrument (LC QTOF), with sequential window acquisition of all theoretical fragment-ion spectra (SWATH) acquisition: systematic studies on its use for screenings in clinical and forensic toxicology and comparison with information-dependent acquisition (IDA). Anal Chem. 86:11742–11749. doi:10.1021/ac503144p.
  • Samaraweera MA, Hall LM, Hill DW, Grant DF. 2018. Evaluation of an artificial neural network retention index model for chemical structure identification in nontargeted metabolomics. Anal Chem. 90:12752–12760. doi:10.1021/acs.analchem.8b03118.
  • Schollée JE, Schymanski EL, Hollender J. 2016. Statistical approaches for LC-HRMS data to characterize, prioritize, and identify transformation products from water treatment processes. In: Drewes JE, Letzel T, editors. Assessing transformation products of chemicals by non-target and suspect screening-Strategies and workflows Volume 1. Washington DC: American Chemical Society; p. 45–65.
  • Schütze A, Otter R, Modick H, Langsch A, Brüning T, Koch HM. 2017. Additional oxidized and alkyl chain breakdown metabolites of the plasticizer DINCH in urine after oral dosage to human volunteers. Arch Toxicol. 91:179–188. doi:10.1007/s00204-016-1688-9.
  • Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, Hollender J. 2014b. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 48:2097–2098. doi:10.1021/es5002105.
  • Schymanski EL, Singer HP, Longree P, Loos M, Ruff M, Stravs MA, Vidal CR, Hollender J. 2014a. Strategies to characterize polar organic contamination in wastewater: exploring the capability of high resolution mass spectrometry. Environ Sci Technol. 48:1811–1818. doi:10.1021/es4044374.
  • Singer HP, Wossner AE, McArdell CS, Fenner K. 2016. Rapid screening for exposure to “non-target” pharmaceuticals from wastewater effluents by combining HRMS-based suspect screening and exposure modeling. Environ Sci Technol. 50:6698–6707. doi:10.1021/acs.est.5b03332.
  • Sjerps RMA, Vughs D, van Leerdam JA, Ter Laak TL, van Wezel AP. 2016. Data-driven prioritization of chemicals for various water types using suspect screening LC-HRMS. Water Res. 93:254–264. doi:10.1016/j.watres.2016.02.034.
  • Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. 2006. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 78:779–787. doi:10.1021/ac051437y.
  • Solliec M, Roy-Lachapelle A, Sauvé S. 2015. Development of a suspect and non-target screening approach to detect veterinary antibiotic residues in a complex biological matrix using liquid chromatography/high-resolution mass spectrometry. Rapid Commun Mass Spectrom. 29:2361–2373. doi:10.1002/rcm.7405.
  • Stachniuk A, Szmagara A, Czeczko R, Fornal E. 2017. LC-MS/MS determination of pesticide residues in fruits and vegetables. J Environ Sci Heal B. 52:446–457. doi:10.1080/03601234.2017.1301755.
  • Suganthi A, Bhuvaneswari K, Ramya M. 2018. Determination of neonicotinoid insecticide residues in sugarcane juice using LCMSMS. Food Chem. 241:275–280. doi:10.1016/j.foodchem.2017.08.098.
  • Sun S, Zhu L, Hu Y, Liu Y. 2018. Studies on the metabolism of paeoniflorin in human intestinal microflora by high performance liquid chromatography/electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometry and quadrupole time-of-flight mass spectrometry. J Chromatogr B. 1085:63–71. doi:10.1016/j.jchromb.2018.03.042.
  • Tengstrand E, Rosén J, Hellenäs K-E, Aberg KM. 2013. A concept study on non-targeted screening for chemical contaminants in food using liquid chromatography-mass spectrometry in combination with a metabolomics approach. Anal Bioanal Chem. 405:1237–1243. doi:10.1007/s00216-012-6506-5.
  • Turnipseed SB, Storey JM, Wu IL, Andersen WC, Madson MR. 2019. Extended liquid chromatography high resolution mass spectrometry screening method for veterinary drug, pesticide and human pharmaceutical residues in aquaculture fish. Food Addit Contam A. 36:1501–1514. doi:10.1080/19440049.2019.1637945.
  • Vergeynst L, Van Langenhove H, Joos P, Demeestere K. 2014. Suspect screening and target quantification of multi-class pharmaceuticals in surface water based on large-volume injection liquid chromatography and time-of-flight mass spectrometry. Anal Bioanal Chem. 406:2533–2547. doi:10.1007/s00216-014-7672-4.
  • von Eyken A, Bayen S. 2019. Optimization of the data treatment steps of a non-targeted LC-MS-based workflow for the identification of trace chemical residues in honey. J Am Soc Mass Spectrom. 30:765–777. doi:10.1007/s13361-019-02157-y.
  • VoPham T, Brooks MM, Yuan J-M, Talbott EO, Ruddell D, Hart JE, Chang -C-CH, Weissfeld JL. 2015. Pesticide exposure and hepatocellular carcinoma risk: A case-control study using a geographic information system (GIS) to link SEER-Medicare and California pesticide data. Environ Res. 143:68–82. doi:10.1016/j.envres.2015.09.027.
  • Wang J, Chow W, Wong JW, Leung D, Chang J, Li M. 2019. Non-target data acquisition for target analysis (nDATA) of 845 pesticide residues in fruits and vegetables using UHPLC/ESI Q-Orbitrap. Anal Bioanal Chem. 411:1421–1431. doi:10.1007/s00216-019-01581-z.
  • Wang Y, Kora G, Bowen BP, Pan C. 2014. MIDAS: A database-searching algorithm for metabolite identification in metabolomics. Anal Chem. 86:9496–9503. doi:10.1021/ac5014783.
  • Wang Z, Cao Y, Ge N, Liu X, Chang Q, Fan C, Pang G-F. 2016. Wide-scope screening of pesticides in fruits and vegetables using information-dependent acquisition employing UHPLC-QTOF-MS and automated MS/MS library searching. Anal Bioanal Chem. 408:7795–7810. doi:10.1007/s00216-016-9883-3.
  • Wang Z, Chang Q, Kang J, Cao Y, Ge N, Fan C, Pang GF. 2015. Screening and identification strategy for 317 pesticides in fruits and vegetables by liquid chromatography-quadrupole time-of-flight high resolution mass spectrometry. Anal Methods-Uk. 7:6385–6402. doi:10.1039/C5AY01478F.
  • Wen YV, Amos RIJ, Talebi M, Szucs R, Dolan JW, Pohl CA, Haddad PR. 2018. retention index prediction using quantitative structure-retention relationships for improving structure identification in nontargeted metabolomics. Anal Chem. 90:9434–9440. doi:10.1021/acs.analchem.8b02084.
  • Wolf S, Schmidt S, Müller-Hannemann M, Neumann S. 2010. In silico fragmentation for computer assisted identification of metabolite mass spectra. Bmc Bioinformatics. 11:148. doi:10.1186/1471-2105-11-148.
  • Wong JW, Wang J, Chow W, Carlson R, Jia Z, Zhang K, Hayward DG, Chang JS. 2018. Perspectives on liquid chromatography-high-resolution mass spectrometry for pesticide screening in foods. J Agric Food Chem. 66:9573–9581. doi:10.1021/acs.jafc.8b03468.
  • Yamaguchi K, Hikiji W, Takino M, Saka K, Hayashida M, Fukunaga T, Ohno Y. 2012. Analysis of tolfenpyrad and its metabolites in plasma in a tolfenpyrad poisoning case. J Anal Toxicol. 36:529–537. doi:10.1093/jat/bks060.
  • Ye H, Wang L, Zhu L, Sun D, Luo X, Wang H, Wang G, Hao H. 2016. Stepped collisional energy MSAll: an analytical approach for optimal MS/MS acquisition of complex mixture with diverse physicochemical properties. J Mass Spectrom. 51:328–341. doi:10.1002/jms.3751.
  • Zhang J, Liu L, Wang X, Huang Q, Tian M, Shen H. 2016. Low-level environmental phthalate exposure associates with urine metabolome alteration in a Chinese male cohort. Environ Sci Technol. 50:5953–5960. doi:10.1021/acs.est.6b00034.
  • Zhang L, Liu S, Cui X, Pan C, Zhang A, Chen F. 2012. A review of sample preparation methods for the pesticide residue analysis in foods. Cent Eur J Chem. 10:900–925.
  • Zhang QQ, Wang ML, Wang Q, Zhao HZ, Zhang ZX, Yu HH, Liu YH, Fu S, Lu ZW, Huang ZH, et al. 2017. Characterization of the potential new phthalides in Ligusticum chuanxiong Hort. using ultra-performance liquid chromatography coupled with quadrupole time of flight tandem mass spectrometry. J Sep Sci. 40:2123–2130. doi:10.1002/jssc.201601443.
  • Zhang Y, Bilbao A, Bruderer T, Luban J, Strambio-De-Castillia C, Lisacek F, Hopfgartner G, Varesio E. 2015. The use of variable Q1 isolation windows improves selectivity in LC-SWATH-MS acquisition. J Proteome Res. 14:4359–4371. doi:10.1021/acs.jproteome.5b00543.
  • Zomer P, Mol HGJ. 2015. Simultaneous quantitative determination, identification and qualitative screening of pesticides in fruits and vegetables using LC-Q-Orbitrap™-MS. Food Addit Contam A. 32:1628–1636. doi:10.1080/19440049.2015.1085652.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.