224
Views
3
CrossRef citations to date
0
Altmetric
Articles

Development of an alternative approach for detecting botulinum neurotoxin type A in honey: Analysis of non-toxic peptides with a reference labelled protein via liquid chromatography-tandem mass spectrometry

, , , , , , , , , , , & show all
Pages 1359-1373 | Received 06 Mar 2020, Accepted 27 Apr 2020, Published online: 09 Jun 2020

References

  • Ahmed SA, Byrne MP, Jensen M, Hines HB, Brueggemann E, Smith LA. 2001. Enzymatic autocatalysis of botulinum A neurotoxin light chain. J Protein Chem. 20(3):221–231. doi:10.1023/A:1010952025677.
  • Anderson NM, Larkin JW, Cole MB, Skinner GE, Whiting RC, Gorris LG, Rodriguez A, Buchanan R, Stewart CM, Hanlin JH, et al. 2011. Food safety objective approach for controlling Clostridium botulinus growth and toxin production in commercially sterile foods. J Food Prot. 74(11):1956–1989. doi:10.4315/0362-028X.JFP-11-082.
  • Aureli P, Franciosa G, Fenicia L. 2002. Infant botulism and honey in Europe: a commentary. Pediatr Infect Dis J. 21(9):866–868. doi:10.1097/00006454-200209000-00016.
  • Babacans S, Rand AG. 2005. Purification of amylase from honey. J Food Sci. 70(6):413–418. doi:10.1111/j.1365-2621.2005.tb11439.x.
  • Bano L, Tonon E, Drigo I, Pirazzini M, Guolo A, Farina G, Agnoletti F, Montecucco C. 2018. Detection of Clostridium tetani neurotoxins inhibited in vivo by botulinum antitoxin B: potential for misleading mouse test results in food controls. Toxins (Basel). 10(6):19. doi:10.3390/toxins10060248.
  • Boyer AE, Moura H, Woolfitt AR, Kalb SR, McWilliams LG, Pavlopoulos A, Schmidt JG, Ashley DL, Barr JR. 2005. From the mouse to the mass spectrometer: detection and differentiation of the endoproteiase activities of botulinum neurotoxin A-G by mass spectrometry. Anal Chem. 77(13):3916–3924. doi:10.1021/ac050485f.
  • Cinone N, Letizia S, Santoro L, Facciorusso S, Armiento R, Picelli A, Ranieri M, Santamato A. 2019. Combined effects of isokinetic training and botulinum toxin type A on spastic equinus foot in patients with chronic stroke: a pilot, single-blind, randomized controlled trial. Toxins (Basel). 11(4):210. doi:10.3390/toxins11040210.
  • Destefano JJ, Langlois TJ, Kirkland JJ. 2008. Characteristics of superficially-porous silica particles for fast HPLC: some performance comparisons with sub-2-microm particles. J Chromatogr Sci. 46(3):254–260. doi:10.1093/chromsci/46.3.254.
  • Dupuis A, Hennekinne JA, Garin J, Brun V. 2008. Protein Standard Absolute Quantification (PSAQ) for improved investigation of staphylococcal food poisoning outbreaks. Proteomics. 8(22):4633–4636. doi:10.1002/pmic.200800326.
  • Fic E, Kedracka-Krok S, Jankowska U, Pirog A, Dziedzicka-Wasylewska M. 2010. Comparison of protein precipitation methods for various rat brain structures prior to proteomic analysis. Electrophoresis. 31(21):3573–3579. doi:10.1002/elps.201000197.
  • Furey A, Moriarty M, Bane V, Kinsella B, Lehane M. 2013. Ion suppression; a critical review on causes, evaluation, prevention and applications. Talanta. 115:104–122. doi:10.1016/j.talanta.2013.03.048.
  • González-Ruiz V, Olives AI, Martín MA. 2015. Core-shell particles lead the way to renewing high-performance liquid chromatography. Trends Analyt Chem. 64:17–28. doi:10.1016/j.trac.2014.08.008.
  • Hansbauer EM, Skiba M, Endermann T, Weisemann J, Stern D, Dorner MB, Finkenwirth F, Wolf J, Luginbühl W, Messelhäußer U, et al. 2016. Detection, differentiation, and identification of botulinum neurotoxin serotype C, CD, D and DC by highly specific immunoassays and mass spectrometry. Analyst. 141(18):5281–5297. doi:10.1039/C6AN00693K.
  • Hayes R, Ahmed A, Edge T, Zhang H. 2014. Core-shell particles: preparation, fundamentals and applications in high performance liquid chromatography. J Chromatogr A. 1357:36–52. doi:10.1016/j.chroma.2014.05.010.
  • Hobbs RJ, Thomas CA, Halliwell J, Gwenin CD. 2019. Rapid detection of botulinum neurotoxins-A review. Toxins (Basel). 11(7):17. doi:10.3390/toxins11070418.
  • [ISO/IEC 17025:2017] International Organization for Standardization/International Electrotechnical Committee. 2017. General requirements for the competence of testing and calibration laboratories. Geneva, Switzerland.
  • Kaji H, Kamiie J, Kawakami H, Kido K, Yamauchi Y, Shinkawa T, Taoka M, Takahashi N, Isobe T. 2007. Proteomics reveals N-linked glycoprotein diversity in caenorhabditis elegans and suggests an atypical translocation mechanism for integral membrane proteins. Mol Cell Proteomics. 6(12):2100–2109. doi:10.1074/mcp.M600392-MCP200.
  • Kalb SR, Barr JR. 2013. Mass spectrometric identification and differentiation of botulinum neurotoxins through toxin proteomics. Rev Anal Chem. 32(3):189–196. doi:10.1515/revac-2013-0013.
  • Kalb SR, Goodnough MC, Malizio CJ, Pirkle JL, Barr JR. 2005. Detection of botulinum neurotoxin A in a spiked milk sample with subtype identification through toxin proteomics. Anal Chem. 77(19):6140–6146. doi:10.1021/ac0511748.
  • Kalb SR, Krilich JC, Dykes JK, Lúquez C, Maslanka SE, Barr JR. 2015. Detection of botulinum toxins A, B, E, and F in foods by endopep-MS. J Agric Food Chem. 63(4):1133–1141. doi:10.1021/jf505482b.
  • Kamiie J, Aihara N, Shirota K. 2016. Basics and practices of quantitative proteomics using selected reaction monitoring (SRM). Proteome Lett. 1:57–62.
  • Kawakami H, Kamiie J, Yasuno K, Kobayashi R, Aihara N, Shirota K. 2012. Dynamics of absolute amount of nephrin in a single podocyte in puromycin aminonucleoside nephrosis rats calculated by quantitative glomerular proteomics approach with selected reaction monitoring mode. Nephrol Dial Transplant. 27(4):1324–1330. doi:10.1093/ndt/gfr492.
  • Klaubert B, Vujtovic-Ockenga N, Wermter R, Schad K, von Meyer L. 2009. Determination of botulinum toxins after peptic sample pre-treatment by multidimensional nanoscale liquid chromatography and nano-electrospray ion-trap mass spectrometry. J Chromatogr B. 877(11–12):1084–1092. doi:10.1016/j.jchromb.2009.02.053.
  • Koh CY, Schaff UY, Piccini ME, Stanker LH, Cheng LW, Ravichandran E, Singh BR, Sommer GJ, Singh AK. 2015. Centrifugal microfluidic platform for ultrasensitive detection of botulinum toxin. Anal Chem. 87(2):922–928. doi:10.1021/ac504054u.
  • Koike H, Kanda M, Hayashi H, Matsushima Y, Ohba Y, Nakagawa Y, Nagano C, Sekimura K, Hirai A, Shindo T, et al. 2019. Quantification of staphylococcal enterotoxin type A in cow milk by using a stable isotope-labelled peptide via liquid chromatography–tandem mass spectrometry. Food Addit Contam Part A. 36(7):1098–1108. doi:10.1080/19440049.2019.1615641.
  • Kozaki S, Sakaguchi S, Sakaguchi G. 1974. Purification and some properties of progenitor toxins of Clostridium botulinum type B. Infect Immun. 10(4):750–756. doi:10.1128/IAI.10.4.750-756.1974.
  • Lévêque C, Ferracci G, Maulet Y, Mazuet C, Popoff M, Seagar M, El Far O. 2014. Direct biosensor detection of botulinum neurotoxin endopeptidase activity in sera from patients with type A botulism. Biosens Bioelectron. 15:207–212. doi:10.1016/j.bios.2014.02.015.
  • Marinelli S, Luvisetto S, Cobianchi S, Makuch W, Obara I, Mezzaroma E, Caruso M, Straface E, Przewlocka B, Pavone F. 2010. Botulinum neurotoxin tyoe A counteracts neutopathic pain and facilitates functional recovery after peripheral nerve injury in animal models. Neuroscience. 171(1):316–328. doi:10.1016/j.neuroscience.2010.08.067.
  • Morineaux V, Mazuet C, Hilaire D, Enche J, Popoff MR. 2015. Characterization of botulinum neurotoxin type A subtypes by immunocapture enrichment and liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 407(19):5559–5570. doi:10.1007/s00216-015-8707-1.
  • Mukamoto M, Maeda H, Kohda T, Nozaki C, Takahashi M, Kozaki S. 2012. Characterization of neutralizing mouse-human chimeric and shuffling antibodies against botulinum neurotoxin A. Microbiol Immunol. 56(11):748–755. doi:10.1111/j.1348-0421.2012.00503.x.
  • [MWHL] Ministry of health, Labour, and Welfare, Tokyo, Japan. 1987. Director notice. Ken-I-Kan No. 71, Ken-Syoku No. 170, Ei-nyu No. 53, Ji-Bo-Ei No. 29.
  • [MWHL] Ministry of health, Labour, and Welfare, Tokyo, Japan. 2016. Director notice. Ken-Kan No. 0108-2.
  • Narumi R, Shimizu Y, Ueda HR. 2017. Protein absolute quantification using cell-free-synthesized peptide. Proteome Lett. 2:75–82.
  • [NIID] National Institute of Infectious Diseases, Tokyo, Japan. 2012. Manual for the detection of pathogenic microorganisms. [accessed 2019 Oct]. https://www.niid.go.jp/niid/ja/labo-manual.html.
  • Peck MW. 2006. Clostridium botulinum and the safety of minimally heated, chilled foods: an emerging issue? J Appl Microbiol. 101(3):556–570. doi:10.1111/j.1365-2672.2006.02987.x.
  • Picotti P, Lam H, Campbell D, Deutsch EW, Mirzaei H, Ranish J, Domon B, Aebersold R. 2008. A database of mass spectrometric assays for the yeast proteome. Nat Methods. 5(11):913–914. doi:10.1038/nmeth1108-913.
  • Pirazzini M, Rossetto O, Eleopra R, Montecucco C. 2017. Botulinum neurotoxins: biology, pharmacology, and toxicology. Pharmacol Rev. 69(2):200–235. doi:10.1124/pr.116.012658.
  • Rajalingam D, Loftis C, Xu JJ, Kumar TK. 2009. Trichloroacetic acid‐induced protein precipitation involves the reversible association of a stable partially structured intermediate. Protein Sci. 18(5):980–993. doi:10.1002/pro.108.
  • Sauter M, Uhl P, Majewsky M, Fresnais M, Haefeli WE, Burhenne J. 2019. An ultrasensitive UPLC-MS/MS assay for the quantification of the therapeutic peptide liraglutide in plasma to assess the oral and nasal bioavailability in beagle dogs. Bioanalysis. 11(9):887–898. doi:10.4155/bio-2018-0322.
  • Scotcher MC, Cheng LW, Stanker LH. 2010. Detection of botulinum neurotoxin serotype B at sub mouse LD(50) levels by a sandwich immunoassay and its application to toxin detection in milk. PLoS One. 5(6):e11047. doi:10.1371/journal.pone.0011047.
  • Singh A, Datta S, Sachdeva A, Maslanka S, Dykes J, Skinner G, Burr D, Whiting RC, Sharma SK. 2015. Evaluation of an enzyme-linked immunosorbent assay (ELISA) kit for the detection of botulinum neurotoxins A, B, E, and F in selected food matrices. Health Secur. 13(1):37–44. doi:10.1089/hs.2014.0075.
  • Sugii S, Sakaguchi G. 1975. Molecular construction of Clostridium botulinum type A toxins. Infect Immun. 12(6):1262–1270. doi:10.1128/IAI.12.6.1262-1270.1975.
  • Thirunavukkarasu N, Johnson E, Pillai S, Hodge D, Stanker L, Wentz T, Singh B, Venkateswaran K, McNutt P, Adler M, et al. 2018. Botulinum neurotoxin detection methods for public health response and surveillance. Front Bioeng Biotechnol. 22(6):80. doi:10.3389/fbioe.2018.00080.
  • Trini C, Vannucchi MG. 2019. The botulinum treatment of neurogenic detrusor overactive: the double-face of the neurotoxin. Toxins (Basel). 11(614). doi:10.3390/toxins11110614.
  • Wang D, Baudys J, Ye Y, Rees JC, Barr JR, Pirkle JL, Kalb SR. 2013. Improved detection of botulinum neurotoxin serotype A by endopep-MS through peptide substrate modification. Anal Biochem. 432(2):115–123. doi:10.1016/j.ab.2012.09.021.
  • Yocum AK, Chinnaiyan AM. 2009. Current affairs in quantitative targeted proteomics: multiple reaction monitoring-mass spectrometry. Brief Funct Genomic Proteomic. 8(2):145–157. doi:10.1093/bfgp/eln056.
  • Zhang S, Masuyer G, Zhang J, Shen Y, Lundin D, Henriksson L, Miyashita SI, Martínez-Carranza M, Dong M, Stenmark P. 2017. Identification and characterization of a novel botulinum neurotoxin. Nat Commun. 3(8):14130. doi:10.1038/ncomms14130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.