424
Views
15
CrossRef citations to date
0
Altmetric
Original Article

Hydrophobic deep eutectic solvent-based ultrasonic-assisted liquid-liquid micro-extraction combined with HPLC-FLD for diphenylamine determination in fruit

, , , &
Pages 339-349 | Received 04 Aug 2020, Accepted 04 Nov 2020, Published online: 17 Dec 2020

References

  • Alizadeh N, Farokhcheh A. 2014. Simultaneous determination of diphenylamine and nitrosodiphenylamine by photochemically induced fluorescence and synchronous fluorimetry using double scans method. Talanta. 121(121):239–246. doi:10.1016/j.talanta.2013.11.054.
  • Altunay N, Elik A. 2020. A green and efficient vortex-assisted liquid-phase microextraction based on supramolecular solvent for UV-VIS determination of nitrite in processed meat and chicken products. Food Chem. 332(332):127395. doi:10.1016/j.foodchem.2020.127395.
  • An Y, Ma W, Row KH. 2019. Preconcentration and determination of chlorophenols in wastewater with dispersive liquid–liquid microextraction using hydrophobic deep eutectic solvents. Anal Lett. 53(2):262–272. doi:10.1080/00032719.2019.1646754.
  • Aoyagi M, Chiba M, Kakimoto Y, Nemoto S. 2016. Determination of diphenylamine in agricultural products by HPLC-FL. J Food Hyg Soc Jpn. 57(6):201–206. doi:10.3358/shokueishi.57.201.
  • Barache UB, Shaikh AB, Lokhande TN, Kamble GS, Anuse MA, Gaikwad SH. 2018. An efficient, cost effective, sensing behaviour liquid-liquid extraction and spectrophotometric determination of copper (II) incorporated with 4-(4′-chlorobenzylideneimino)-3-methyl-5-mercapto-1, 2, 4-triazole: analysis of food samples, leafy vegetables, fertilizers and environmental samples. Spectrochim Acta Part A. 189(189):443–453.
  • Dai Y, Witkamp GJ, Verpoorte R, Choi YH. 2015. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 187(187):14–19. doi:10.1016/j.foodchem.2015.03.123.
  • Faraji M. 2019. Determination of some red dyes in food samples using a hydrophobic deep eutectic solvent-based vortex assisted dispersive liquid-liquid microextraction coupled with high performance liquid chromatography. J Chromatogr A. 1591(1591):15–23. doi:10.1016/j.chroma.2019.01.022.
  • Farajzadeh MA, Sattari Dabbagh M, Yadeghari A. 2017. Deep eutectic solvent based gas-assisted dispersive liquid-phase microextraction combined with gas chromatography and flame ionization detection for the determination of some pesticide residues in fruit and vegetable samples. J Sep Sci. 40(10):2253–2260. doi:10.1002/jssc.201700052.
  • Farokhcheh A, Alizadeh N. 2013. Determination of diphenylamine residue in fruit samples using spectrofluorimetry and multivariate analysis. LWT Food Sci Technol. 54(1):6–12. doi:10.1016/j.lwt.2013.05.032.
  • Florindo C, Branco LC, Marrucho IM. 2019. Quest for green-solvent design: from hydrophilic to hydrophobic (Deep) eutectic solvents. ChemSusChem. 12(8):1549–1559. doi:10.1002/cssc.201900147.
  • García-Reyes JF, Ortega-Barrales P, Molina-Díaz A. 2005. Rapid determination of diphenylamine residues in apples and pears with a single multicommuted fluorometric optosensor. J Agric Food Chem. 53(26):9874–9878. doi:10.1021/jf051973r.
  • Ge D, Wang Y, Jiang Q, Dai E. 2019. A deep eutectic solvent as an extraction solvent to separate and preconcentrate parabens in water samples using in situ liquid-liquid microextraction. J Braz Chem Soc. 30(6):1203–1210.
  • Gokoglu N. 2019. Novel natural food preservatives and applications in seafood preservation: a review. J Sci Food Agric. 99(5):2068–2077. doi:10.1002/jsfa.9416.
  • Hammond OS, Bowron DT, Edler KJ. 2017. The effect of water upon deep eutectic solvent nanostructure: an unusual transition from ionic mixture to aqueous solution. Angew Chem. 56(33):9782–9785. doi:10.1002/anie.201702486.
  • Jalili V, Barkhordari A, Ghiasvand A. 2020. A comprehensive look at solid-phase microextraction technique: a review of reviews. Microchem J. 152(152):10439. doi:10.1016/j.microc.2019.104319.
  • Ji Y, Meng Z, Zhao J, Zhao H, Zhao L. 2020. Eco-friendly ultrasonic assisted liquid-liquid microextraction method based on hydrophobic deep eutectic solvent for the determination of sulfonamides in fruit juices. J Chromatogr A. 1609(1609):460520–460529. doi:10.1016/j.chroma.2019.460520.
  • Karami-Osboo R, Maham M. 2018. Pre-concentration and extraction of aflatoxins from rice using air-assisted dispersive liquid–liquid microextraction. Food Anal Methods. 11(10):2816–2821. doi:10.1007/s12161-018-1265-3.
  • Li G, Zha H, Liu X. 2009. Ultraviolet spectrophotometric determination of diphenylamine in workplace air. J Environ Health. 26(11):65–67.
  • Li X, Row KH. 2016. Development of deep eutectic solvents applied in extraction and separation. J Sep Sci. 39(18):3505–3520. doi:10.1002/jssc.201600633.
  • Liu L, Zhu X, Zeng Y, Wang H, Lu Y, Zhang J, Yin Z, Chen Z, Yang Y, Li L. 2018. An electrochemical sensor for diphenylamine detection based on reduced graphene oxide/Fe3O4-molecularly imprinted polymer with 1,4-Butanediyl-3,3′-bis-l-vinylimidazolium dihexafluorophosphate ionic liquid as cross-linker. Polymers (Basel). 10(12):1329. doi:10.3390/polym10121329.
  • Liu W, Zong B, Wang X, Cai J, Yu J. 2019a. A highly efficient vortex-assisted liquid–liquid microextraction based on natural deep eutectic solvent for the determination of Sudan I in food samples. RSC Adv. 9(30):17432–17439. doi:10.1039/C9RA01405E.
  • Liu X, Liu C, Qian H, Qu Y, Zhang S, Lu R, Gao H, Zhou W. 2019b. Ultrasound-assisted dispersive liquid-liquid microextraction based on a hydrophobic deep eutectic solvent for the preconcentration of pyrethroid insecticides prior to determination by high-performance liquid chromatography. Microchem J. 146(146):614–621. doi:10.1016/j.microc.2019.01.048.
  • López-López M, Bravo JC, Garcia-Ruiz C, Torre M. 2013. Diphenylamine and derivatives as predictors of gunpowder age by means of HPLC and statistical models. Talanta. 103(103):214–220. doi:10.1016/j.talanta.2012.10.035.
  • Luo X. 2009. Determination of residual diphenylamine in food by high performance liquid chromatography. Food Sci. 30(6):163–166.
  • Makoś P, Słupek E, Gębicki J. 2020. Hydrophobic deep eutectic solvents in microextraction techniques–A review. Microchem J. 152(152):104384. doi:10.1016/j.microc.2019.104384.
  • Mei H, Quan Y, Wang W, Zhou H, Liu Z, Shi H, Wang P. 2016. Determination of diphenylamine in gunshot residue by HPLC-MS/MS. J Forensic Sci Med. 2(1):18–21. doi:10.4103/2349-5014.162808.
  • Meng X, Ballerat-Busserolles K, Husson P, Andanson JM. 2016. Impact of water on the melting temperature of urea + choline chloride deep eutectic solvent. New J Chem. 40(5):4492–4499. doi:10.1039/C5NJ02677F.
  • Mohebbi M, Heydari R, Ramezani M. 2018. Determination of Cu, Cd, Ni, Pb and Zn in edible oils using reversed-phase ultrasonic assisted liquid–liquid microextraction and flame atomic absorption spectrometry. J Anal Chem. 73(1):30–35. doi:10.1134/S1061934818010069.
  • Moreda-Piñeiro J, Moreda-Piñeiro A. 2019. Combined assisted extraction techniques as green sample pre-treatments in food analysis. TrAC Trends Anal Chem. 118(118):1–18. doi:10.1016/j.trac.2019.05.026.
  • National Health Commission of the People’s Republic of China. 2019. GB 2763-2019 National Food Safety Standard Maximum Residue Limits of Pesticides in Food. Beijing, China, China Standard Press.
  • Okhravi T, Sorouraddin SM, Farajzadeh MA, Mohebbi A. 2020. Development of a liquid-nitrogen-induced homogeneous liquid-liquid microextraction of Co(II) and Ni(II) from water and fruit juice samples followed by atomic absorption spectrometry detection. Anal Bioanal Chem. 412(7):1675–1684. doi:10.1007/s00216-020-02406-0.
  • Omena E, Oenning AL, Merib J, Richter P, Rosero-Moreano M, Carasek E. 2019. A green and simple sample preparation method to determine pesticides in rice using a combination of SPME and rotating disk sorption devices. Anal Chim Acta. 1069(1069):57–65. doi:10.1016/j.aca.2019.04.002.
  • Pena-Pereira F, Namiesnik J. 2014. Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes. ChemSusChem. 7(7):1784–1800. doi:10.1002/cssc.201301192.
  • Ramaraj S, Sakthivel M, Chen SM, Ho KC. 2019. Ultrasound-assisted synthesis of two-dimensional layered ytterbium substituted molybdenum diselenide nanosheets with excellent electrocatalytic activity for the electrochemical detection of diphenylamine anti-scald agent in fruit extract. Ultrason Sonochem. 50:265–277. doi:10.1016/j.ultsonch.2018.09.028.
  • Ramki S, Sukanya R, Chen SM, Sakthivel M, Ye YT. 2019. Electrochemical detection of toxic anti-scald agent diphenylamine using oxidized carbon nanofiber encapsulated titanium carbide electrocatalyst. J Hazard Mater. 368(368):760–770. doi:10.1016/j.jhazmat.2019.01.110.
  • Rezaei F, Yamini Y, Asiabi H, Moradi M. 2015. Determination of diphenylamine residue in fruit samples by supercritical fluid extraction followed by vesicular based-supramolecular solvent microextraction. J Supercrit Fluids. 100(100):79–85. doi:10.1016/j.supflu.2015.02.021.
  • Ribeiro BD, Florindo C, Iff LC, Coelho MAZ, Marrucho IM. 2015. Novel menthol-based eutectic mixtures: hydrophobic low viscosity solvents. ACS Sustainable Chem Eng. 3(10):2469–2477. doi:10.1021/acssuschemeng.5b00532.
  • Robatscher P, Eisenstecken D, Sacco F, Pohl H, Berger J, Zanella A, Oberhuber M. 2012. Diphenylamine residues in apples caused by contamination in fruit storage facilities. J Agric Food Chem. 60(9):2205–2211. doi:10.1021/jf204477c.
  • Rudell DR, Mattheis JP, Fellman JK. 2005. Evaluation of diphenylamine derivatives in apple peel using gradient reversed-phase liquid chromatography with ultraviolet-visible absorption and atmospheric pressure chemical ionization mass selective detection. J Chromatogr A. 1081(2):202–209. doi:10.1016/j.chroma.2005.05.060.
  • Ruesgas-Ramon M, Figueroa-Espinoza MC, Durand E. 2017. Application of Deep Eutectic Solvents (DES) for phenolic compounds extraction: overview, challenges, and opportunities. J Agric Food Chem. 65(18):3591–3601. doi:10.1021/acs.jafc.7b01054.
  • Saad B, Haniff NH, Idiris Saleh M, Hasani Hashim N, Abu A, Ali N. 2004. Determination of ortho-phenylphenol, diphenyl and diphenylamine in apples and oranges using HPLC with fluorescence detection. Food Chem. 84(2):313–317. doi:10.1016/S0308-8146(03)00260-7.
  • Sadrykia F, Shayanfar A, Valizadeh H, Nemati M. 2018. A fast and simple method for determination of vitamin E in infant formula by dispersive liquid-liquid microextraction combined with HPLC-UV. Food Anal Methods. 12(1):23–31. doi:10.1007/s12161-018-1331-x.
  • Sakthivel M, Sukanya R, Chen SM. 2018. Fabrication of europium doped molybdenum diselenide nanoflower based electrochemical sensor for sensitive detection of diphenylamine in apple juice. Sens Actuators B Chem. 273(273):616–626. doi:10.1016/j.snb.2018.06.094.
  • Sereshti H, Jamshidi F, Nouri N, Nodeh HR. 2020. Hyphenated dispersive solid- and liquid-phase microextraction technique based on a hydrophobic deep eutectic solvent: application for trace analysis of pesticides in fruit juices. J Sci Food Agric. 100(6):2534–2543. doi:10.1002/jsfa.10279.
  • Shishov A, Bulatov A, Locatelli M, Carradori S, Andruch V. 2017. Application of deep eutectic solvents in analytical chemistry. Microchem J. 135(135):33–38. doi:10.1016/j.microc.2017.07.015.
  • Shishov A, Pochivalov A, Nugbienyo L, Andruch V, Bulatov A. 2020. Deep eutectic solvents are not only effective extractants. Trac Trends Anal Chem. 129(129):115956. doi:10.1016/j.trac.2020.115956.
  • Sivrikaya S. 2020. A deep eutectic solvent based liquid phase microextraction for the determination of caffeine in Turkish coffee samples by HPLC-UV. Food Addit Contam Part A. 37(3):488–495. doi:10.1080/19440049.2020.1711972.
  • Smith EL, Abbott AP, Ryder KS. 2014. Deep eutectic solvents (DESs) and their applications. Chem Rev. 114(21):11060–11082. doi:10.1021/cr300162p.
  • Tang W, Dai Y, Row KH. 2018. Evaluation of fatty acid/alcohol-based hydrophobic deep eutectic solvents as media for extracting antibiotics from environmental water. Anal Bioanal Chem. 410(28):7325–7336. doi:10.1007/s00216-018-1346-6.
  • Thongsaw A, Udnan Y, Ross GM, Chaiyasith WC. 2019. Speciation of mercury in water and biological samples by eco-friendly ultrasound-assisted deep eutectic solvent based on liquid phase microextraction with electrothermal atomic absorption spectrometry. Talanta. 197(197):310–318. doi:10.1016/j.talanta.2019.01.018.
  • Van Osch DJGP, Dietz CHJT, van Spronsen J, Kroon MC, Gallucci F, van Sint Annaland M, Tuinier R. 2019. A search for natural hydrophobic deep eutectic solvents based on natural components. ACS Sustainable Chem Eng. 7(3):2933–2942. doi:10.1021/acssuschemeng.8b03520.
  • Veysi A, Khanmoradi M, Taghipour AA. 2018. Development of a dispersive liquid–liquid microextraction method for preconcentration and determination of copper in water and vegetables. J Veg Sci. 25(4):317–329.
  • Wang H, Hu L, Liu X, Yin S, Lu R, Zhang S, Zhou W, Gao H. 2017. Deep eutectic solvent-based ultrasound-assisted dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the determination of ultraviolet filters in water samples. J Chromatogr A. 1516(1516):1–8. doi:10.1016/j.chroma.2017.07.073.
  • Wang Q, Chen R, Shatner W, Cao Y, Bai Y. 2019. State-of-the-art on the technique of dispersive liquid-liquid microextraction. Ultrason Sonochem. 51(51):369–377. doi:10.1016/j.ultsonch.2018.08.010.
  • Zhang K, Liu C, Li S, Wang Y, Zhu G, Fan J. 2019. Vortex-assisted liquid-liquid microextraction based on a hydrophobic deep eutectic solvent for the highly efficient determination of sudan I in food samples. Anal Lett. 53(8):1204–1217. doi:10.1080/00032719.2019.1700422.
  • Zhu S, Zhou J, Jia H, Zhang H. 2018. Liquid-liquid microextraction of synthetic pigments in beverages using a hydrophobic deep eutectic solvent. Food Chem. 243(243):351–356. doi:10.1016/j.foodchem.2017.09.141.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.